Hyeonwoo Noh | Seunghoon Hong | Bohyung Han |
POSTECH |
We propose a novel semantic segmentation algorithm by learning a deconvolution network. We learn the network on top of the convolutional layers adopted from VGG 16-layer net. The deconvolution network is composed of deconvolution and unpooling layers, which identify pixel-wise class labels and predict segmentation masks. We apply the trained network to each proposal in an input image, and construct the final semantic segmentation map by combining the results from all proposals in a simple manner. The proposed algorithm mitigates the limitations of the existing methods based on fully convolutional networks by integrating deep deconvolution network and proposal-wise prediction; our segmentation method typically identifies detailed structures and handles objects in multiple scales naturally. Our network demonstrates outstanding performance in PASCAL VOC 2012 dataset, and we achieve the best accuracy (72.5%) among the methods trained with no external data through ensemble with the fully convolutional network.
Evaluation results on PASCAL VOC 2012 test set. (algorithms trained without additional data)
|
|
[arxiv preprint] |
DeconvNet model is now available. (Trained on VOC2012 trainval)
To run DeconvNet, you need modified version of caffe
If you want to reproduce our reported result, check our github repository.