Summary
- **Problem:** occlusion detection and handling for visual tracking.
- **Contribution:** explicit occlusion detection by a single classifier, which is learnt based on likelihoods.
- Simple and active occlusion detection.
- Not perfect, but improving tracking performance significantly.
- Universal classifier for occlusion detection.

Learning Occlusion with Likelihoods for Visual Tracking

Tracking with Occlusion Reasoning

- **Tracking with an occlusion mask**
 - Problem: occlusion detection and handling for visual tracking.
 - Contribution: explicit occlusion detection by a single classifier, which is learnt based on likelihoods.
 - Observation likelihoods only by unoccluded parts:
 \[\ell(y_i) = \exp\left(-\frac{1}{2} \| \tilde{y}_i - \tilde{T} \tilde{a}_i \|^2 \right) \]
 - Tracking results:
 \[t^* = \arg \max_y \ell(y_i), \quad y^* = y^*_i \]

Occlusion reasoning by classification

- Reconstruction of \(y^* \)
- Patch-likelihoods
- Occlusion mask update

L_1 Minimization Tracking

- **Particle filter + sparse representation** [1]
 - Dictionary = target templates + trivial templates
 - Observation based on sparse representation
 \[y = [T \ 1 - T] \cdot \begin{bmatrix} e_{x_1} \\ e_{x_2} \end{bmatrix} = Bc, \text{subject to} \ c \geq 0. \]
 - Observation likelihoods of samples:
 \[\ell(y_i) = \exp\left(-\frac{1}{2} \| y_i - T a_i \|^2 \right) \]
 - Training dataset
 \[(t_{ij}, h^2_{ij}(y)) \]
 - Learning a linear SVM in off-line

Experiments

- **Simulation**
 - \(L_1 \) minimization tracking + groundtruth
 - Decent occlusion reasoning improved tracking performance significantly.

Tracking with Full Occlusion

- **Tracking results:** L1TOR (Ours) L1T [1] IVT [2] groundtruth

Our occlusion reasoning + IVT [2]

The quantitative comparisons of 4 occlusion reasoning algorithms over time:
- ORR – random guessing
- ORM – one cell likelihood
- ORC – more conservative ORM