Lecture 6: SURF and HOG

Bohyung Han
CSE, POSTECH
bhhan@postech.ac.kr

SURF

• Speed-Up Robust Features (SURF)
 ▪ Simplified version of SIFT
 ▪ Faster computation but comparable performance

• Characteristics
 ▪ Fast interest point detection
 ▪ Distinctive interest point description
 ▪ Speeded-up descriptor matching
 ▪ Invariant to common image transformations:
 ▪ Image rotation
 ▪ Scale changes
 ▪ Illumination change
 ▪ Small change in viewpoint

Integral Image

• Advantage of integral images
 ▪ Speed up the computation of the second order derivatives of Gaussian and Haar-wavelet responses
 ▪ Can be efficiently computed by row sum followed by column sum or vice versa.

\[
ii(x, y) = \sum_{x' = x, y' = y} i(x', y')
\]

\[
s(x, y) = s(x, y - 1) + i(x, y)
\]

\[
ii(x, y) = ii(x - 1, y) + s(x, y)
\]

Feature Evaluation with Integral Image

• How to compute the sum of the pixel intensities in \(D \) efficiently using integral image?

\[
\sum_{(x, y) \in D} i(x, y) = ii(x_4, y_4) - ii(x_3, y_3) - ii(x_2, y_2) + ii(x_1, y_1)
\]

The evaluation of two-, three- and four-rectangle features require only 6, 8 and 9 table look-ups, respectively.
Interest Point Detection

- Gaussian second order derivatives
 \[\frac{\partial^2}{\partial x^2} G(\sigma) \quad \frac{\partial^2}{\partial y^2} G(\sigma) \quad \frac{\partial^2}{\partial x \partial y} G(\sigma) \]

- Hessian-based interest point localization
 \[H(x, y, \sigma) = \begin{bmatrix} L_{xx}(x, y, \sigma) & L_{xy}(x, y, \sigma) \\ L_{xy}(x, y, \sigma) & L_{yy}(x, y, \sigma) \end{bmatrix} \]
 \[L_{xx}(x, y, \sigma) = \frac{\partial^2}{\partial x^2} G(\sigma) \cdot I(x, y) \quad L_{yy}(x, y, \sigma) = \frac{\partial^2}{\partial y^2} G(\sigma) \cdot I(x, y) \]
 \[L_{xy}(x, y, \sigma) = \frac{\partial^2}{\partial x \partial y} G(\sigma) \cdot I(x, y) \]

Approximated Blob Response

- Approximation with integral images
 \[\frac{\partial^2}{\partial y^2} G(\sigma) \quad F_{yy}(\sigma) \quad \frac{\partial^2}{\partial x \partial y} G(\sigma) \quad F_{xy}(\sigma) \]
 - Filter responses can be computed using integral images.
 - Very fast: Computation time is independent of filter size.
 - Performance is comparable or even better than cropped Gaussians.

Approximated Blob Response

- Approximation with integral images
 \[F_{yy}(\sigma) \quad F_{xy}(\sigma) \]
 \[L_{yy}(x, y, \sigma) \approx D_{yy}(x, y, \sigma) = F_{yy}(\sigma) \cdot I(x, y) \]
 \[L_{xy}(x, y, \sigma) \approx D_{xy}(x, y, \sigma) = F_{xy}(\sigma) \cdot I(x, y) \]
 \[H(x, y, \sigma) = \begin{bmatrix} L_{xx}(x, y, \sigma) & L_{xy}(x, y, \sigma) \\ L_{xy}(x, y, \sigma) & L_{yy}(x, y, \sigma) \end{bmatrix} \approx \begin{bmatrix} D_{xx} & D_{xy} \\ D_{xy} & D_{yy} \end{bmatrix} \]
 - Approximated blob response: by determinant of Hessian as
 \[\det(H) = D_{xx}D_{yy} - (wD_{xy})^2 \quad w \approx 0.9 \]

Scale Space Pyramid

- Scale analysis with constant image size
 - Computation time is independent of filter size.

- Filter sizes
 - 1st octave: 9x9, 15x15, 21x21, 27x27
 - 2nd octave: 15x15, 27x27, 39x39, 51x51
 - 3rd octave: 27x27, 51x51, 75x75, 99x99
Scale Selection

- Non-maximum suppression and interpolation
- Blob-like feature detector

Orientation Assignment

- Methodology
 - The Haar wavelet responses are represented as vectors.
 - Sum all responses within a sliding orientation window covering 60 degree
 - The two summed response yield a new vector
 - The longest vector is the dominant orientation

Example of Haar wavelets

Circular neighborhood of radius 6s around interest point
(s = the scale at the point: 9x9 filter is equivalent s = 1.2.)

Building the Descriptor

- Descriptor specification
 - Split the interest region up into 4 x 4 square sub-regions
 - Compute gradients by applying Haar-like features
 - Compute \(\sum dx, \sum |dx|, \sum dy, \text{ and } \sum |dy| \): 64D altogether
 - Normalize the vector into unit length

Examples of Descriptors
Robustness of SURF

Image sub-region

- **SIFT gradients**
- **SURF sums**

- **clean**
 - \[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \]
 - \[\sum_{i,j} I(x+i, y+j) \]

- **noisy**
 - \[\frac{\partial I}{\partial x}, \frac{\partial I}{\partial y} \]
 - \[\sum_{i,j} I(x+i, y+j) \]

SIFT vs. SURF

- **SIFT**
 - Apply DoG or LoG
 - Find local maxima
 - Remove edges using Hessian
 - Affine transformation
 - Orientation normalization
 - Extract descriptor

- **Surf**
 - Compute Hessian at each position
 - Identify interest points
 - Orientation normalization
 - Extract descriptor

Variations

- **Parameters**
 - Gradient scale
 - Size of blocks and cells
 - Orientation bins
 - Percentage of block overlap

- **Schemes**
 - RGB or Lab, color/gray-space
 - Block normalization
 - Block shapes: R-HOG, C-HOG

HOG

- **Histogram of Oriented Gradients (HOG)**
 - Normalize gamma and color
 - Compute gradients in the region to be described
 - Divide the region into cells
 - Construct histogram of gradient orientations for each cell
 - Group the cells into large blocks
 - Normalize each block

Implementation Details

- Gradients
 - $[-1 \ 0 \ 1] \text{ and } [-1 \ 0 \ 1]^T$ were good enough.

- Cell histograms
 - Each pixel within the cell casts a weighted vote (by gradient magnitude) for an orientation histogram.
 - 9 channels based on the values found in the unsigned gradient

- Blocks
 - Group the cells together into larger blocks, by either R-HOG or C-HOG.
 - Normalization
 - $L_1: v \leftarrow \frac{v}{\sqrt{||v||_1} + \varepsilon}$
 - $L_1 \text{ sqrt}: v \leftarrow \frac{v}{\sqrt{||v||_1} + \varepsilon}$
 - $L_2: v \leftarrow \frac{v}{\sqrt{||v||_2} + \varepsilon^2}$
 - $L_2 \text{ Hys}: L_2 \text{ norm } + \text{clipping at 0.2 and renormalization}$

An Example of HOG Descriptor

- For pedestrian detection
- Specification
 - Cell size: 8x8
 - Block size: 16x16
 - Each window has 8x16 cells.
 - Each block is composed of 2x2 cells, which means that there are 7x15 blocks.
 - No orientation normalization
 - High dimensionality

Other Feature Descriptors

- Local Binary Patterns (LBP)
- Bias and gain normalization (MOPS)
- PCA-SIFT
- Gradient location-orientation histogram (GLOH)

Visualization of HOG