Online ensemble tracking with CNNs: challenges
- Lack of training data
- Lack of diversity of CNN models
- Label noise of training examples

Main contribution
- BranchOut: regularization for ensemble CNNs
 - Well-suited for online ensemble learning
 - Stochastically selecting updating branches
 - Related to DropOut [1] and DropConnect [2]
- Sharing idea with bagging
- Multi-level target representation using a CNN
 - Implementing with multi-level FC layers
 - Representing targets with variable abstraction levels
- Well-organized experiment
 - SOTA performance in the standard datasets
 - Proper ablation study

Architecture
- A variation on the award-winning MDNet [3] architecture
- Multiple branches with a variable number of FC layers
 - 10 branches: 5 with one layer and 5 with two layers
- Ensemble and classification layers

Stochastic learning with regularization
- Stochastic branch selection:
 - \(a_k \sim \text{Bernoulli}(p_k) \)
- Loss function from all branches:
 \[
 L = \sum_{i=1}^{K} \sum_{k=1}^{K} a_k \mathcal{L}(F_i(x'; \theta_k))
 \]
- Stochastic gradient: updating FC layers only
 \[
 \frac{\partial L}{\partial \theta_k} = \sum_{i=1}^{K} \sum_{k=1}^{K} a_k \frac{\partial}{\partial \theta_k} \mathcal{L}(F_i(x'; \theta_k))
 \]

Tracking algorithm and implementation details
- CNN initialization
 - Conv1-3 layers: from VGG-M
 - FC layers: random (learned with GT at the 1st frame)
- Main loop
 - Dense sampling (256) for observation
 - Track in translation+scale space
 - Target estimation:
 - Additional components
 - Bounding box regression
 - Hard negative mining
 - Search space expansion upon failure
 - Model update
 - Long- and short-term updates [3]
 - Selected branches only

Algorithm I: Stochastic ensemble tracking by BranchOut
Requirer: CNN with K branches of FC layers parameterized by \(\theta = (\theta_1, \ldots, \theta_K) \) and initial target state \(x_1 \).

- Target states \(x_t \):
 1. Randomly initialize \(\theta = (\theta_1, \ldots, \theta_K) \).
 2. Train a bounding box regression model.
 3. Draw positive samples \(S_t^+ \) and negative samples \(S_t^- \).
 4. Update \(\theta_t \) using \(S_t^+ \) and \(S_t^- \).
 5. \(t = t + 1 \).
 6. end if

- Draw target candidate samples \(x_t \in [1, \ldots, N] \).
 7. Find the optimal target state \(\hat{x}_t \) by Eq. (16).
 - if \(F_t(\hat{x}_t) > 0.6 \) then
 8. Draw new training samples \(S_t^+ \) and \(S_t^- \).
 9. \(T = T + 1 \).
 10. if \(T > T' \) then
 11. end if
 12. \(T' = T' \times (\text{init}, \text{ens}) \).

- Model update
 - Long- and short-term updates [3]
 - Selected branches only

BranchOut: Diversifying the models learned in individual branches
Avoiding contamination of models by partial updates
Less computation compared to naive ensemble

BranchOut (with Model I)

- Learning Rate: \(0.0005 \times 0.98 \) every 500 frames
- update: \(\text{Cyclical} \), \(\text{Cyclical} \), \(\text{Cyclical} \), \(\text{Cyclical} \)
- Main loop: \(\text{template} \), \(\text{template} \), \(\text{template} \), \(\text{template} \)
- Accuracy: \(0.683 \), \(0.591 \), \(0.679 \), \(0.674 \)
- Precision (\#top 50): \(0.640 \), \(0.643 \), \(0.669 \), \(0.642 \)

VOT2015 results

- Contribution of stochastic update and multi-level representation

BranchOut (with Model I)

- Learning Rate: \(0.0005 \times 0.98 \) every 500 frames
- update: \(\text{Cyclical} \), \(\text{Cyclical} \), \(\text{Cyclical} \), \(\text{Cyclical} \)
- Main loop: \(\text{template} \), \(\text{template} \), \(\text{template} \), \(\text{template} \)
- Accuracy: \(0.683 \), \(0.591 \), \(0.679 \), \(0.674 \)
- Precision (\#top 50): \(0.640 \), \(0.643 \), \(0.669 \), \(0.642 \)

References