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Abstract

This paper studies semi-supervised learning of seman-
tic segmentation, which assumes that only a small portion
of training images are labeled and the others remain unla-
beled. The unlabeled images are usually assigned pseudo
labels to be used in training, which however often causes
the risk of performance degradation due to the confirma-
tion bias towards errors on the pseudo labels. We present
a novel method that resolves this chronic issue of pseudo
labeling. At the heart of our method lies error localiza-
tion network (ELN), an auxiliary module that takes an im-
age and its segmentation prediction as input and identifies
pixels whose pseudo labels are likely to be wrong. ELN
enables semi-supervised learning to be robust against in-
accurate pseudo labels by disregarding label noises during
training and can be naturally integrated with self-training
and contrastive learning. Moreover, we introduce a new
learning strategy for ELN that simulates plausible and di-
verse segmentation errors during training of ELN to en-
hance its generalization. Our method is evaluated on PAS-
CAL VOC 2012 and Cityscapes, where it outperforms all
existing methods in every evaluation setting.

1. Introduction
Recent advances in semantic segmentation have been at-

tributed to supervised learning of deep neural networks [6,
7, 33, 37, 50] on large-scale datasets [10, 12, 15, 32]. How-
ever, collecting training data for semantic segmentation is
labour-intensive and time-consuming due to the prohibitive
cost of pixel-wise class labeling, which often leads to a
dataset limited in terms of the number of annotated data and
class diversity. To address this issue, label efficient learning,
such as semi-supervised learning [3, 5, 19, 24, 26, 27, 29,
30, 35, 36], unsupervised learning [9, 46], weakly super-
vised learning [1, 2, 4, 11, 23, 28, 42, 48], and synthetic-to-
real domain adaptation [20, 25, 31, 44, 45, 47, 53], has been
proposed for semantic segmentation.

This paper studies semi-supervised learning of semantic
segmentation, which assumes that only a subset of train-

ing images are assigned segmentation labels while the oth-
ers remain unlabeled. Undoubtedly, the key to the suc-
cess of this task is to utilize the unlabeled images effec-
tively. Self-training [5, 27, 35, 49] and contrastive learn-
ing [3, 29, 51, 52] are techniques commonly used for the
purpose in literature. Self-training generates pseudo labels
of unlabeled images using a model trained on labeled ones,
and uses them for supervised learning. Meanwhile, con-
trastive learning forces feature vectors corresponding to the
same pseudo label to be close to each other. Although
these techniques have improved the performance of semi-
supervised semantic segmentation substantially, they share
a common drawback: Since predictions for unlabeled im-
ages are usually corrupted by errors, learning using such
predictions as supervision causes confirmation bias towards
the errors and returns corrupted models consequently. Most
existing methods alleviate this issue simply by not using un-
certain predictions as supervision [3, 19, 29, 36], but their
performance depends heavily on hand-tuned thresholds.

A recent approach deals with errors on pseudo labels by
learning and exploiting an auxiliary network that corrects
the errors [27, 35]; this model, called error correction net-
work (ECN), learns from the difference between predictions
of the main segmentation network and their ground truth la-
bels on the labeled subset of training images. Ideally, ECN
can significantly improve the quality of pseudo labels, but
in practice, its advantage is often limited due to the chal-
lenges in its training. Since the segmentation network is
quickly overfitted to a small number of labeled images, its
outputs used as input to ECN do not cover a wide variety of
prediction errors that ECN faces in testing, which results in
limited generalization capability of ECN.

We present a novel method that is also dedicated to han-
dling errors on pseudo labels yet better generalizes to those
of arbitrary unlabeled images. The core of our method is
the error localization network (ELN), which identifies pix-
els with erroneous pseudo labels in the form of binary seg-
mentation. As will be demonstrated empirically, simply dis-
regarding invalid pseudo labels, instead of correcting them,
is sufficient to alleviate the confirmation bias and to learn
accurate segmentation models. More importantly, since er-
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Figure 1. Our semi-supervised learning framework incorporating ELN. It employs two segmentation networks, the student (s), which will
be our final model, and the teacher (t) used for generating pseudo labels. The student is trained using the pseudo labels of the teacher in two
different ways, self-training and contrastive learning. To be specific, the decoder has two heads, one for segmentation (Seg) and the other
for feature embedding (Proj); self-training and contrastive learning are applied to outputs of the Seg and Proj heads, respectively. Then the
teacher is updated by an exponential moving average (EMA) of the student. ELN allows both self-training and contrastive learning to be
robust against noises on pseudo labels by identifying and disregarding pixels whose pseudo labels are likely to be noisy.

ror localization is a class-agnostic subproblem of error cor-
rection and accordingly easier to solve, it is more straight-
forward to train an accurate and well-generalizable network
for the target task.

Moreover, we design a novel training strategy for ELN
to further improve its generalization. Specifically, we at-
tach multiple auxiliary decoders to the main segmentation
network and train them to achieve different accuracy levels
so that they simulate the segmentation network at different
training stages. ELN is then trained to localize errors on the
predictions given by the auxiliary decoders as well as the
main segmentation network. This strategy improves gen-
eralization of ELN since such predictions used as input to
ELN potentially exhibit error patterns that the segmentation
network causes during self-training with unlabeled images.

The trained ELN is then used for semi-supervised learn-
ing of semantic segmentation; the overall pipeline incor-
porating ELN is illustrated in Fig. 1. Our framework ex-
ploits unlabeled images in two ways: self-training and con-
trastive learning, both relying on pseudo labels. To this end,
we adopt two segmentation networks: A student network,
which will be our final model, and a teacher network gener-
ating pseudo labels and updated by an exponential moving
average of the student. Self-training is done by learning the
student using pseudo labels produced by the teacher. Mean-
while, contrastive learning encourages embedding vectors
of the student and teacher to be similar if their pseudo la-
bels are identical. ELN helps improve the effect of both

self-training and contrastive learning by filtering out poten-
tially erroneous pseudo labels.

Following the convention, the proposed method is eval-
uated on the PASCAL VOC 2012 [12] and Cityscapes [10]
datasets while varying the number of labeled training im-
ages, and it demonstrates superior performance to previous
work on both of the datasets. In brief, our main contribution
is three-fold.

• We propose error localization, a new approach to deal-
ing with errors on pseudo labels. It is simple yet effec-
tive and can be naturally incorporated with self-training
and contrastive learning. Moreover, we empirically
demonstrate the superiority of error localization to error
correction.

• We develop a new strategy for generating diverse and
plausible prediction errors intentionally during the train-
ing of ELN. This improves the generalization of ELN
even using a small number of labeled data for training.

• Segmentation networks trained by our method achieves
the state of the art on two benchmark datasets, PASCAL
VOC 2012 and Cityscapes, in every setting.

2. Related Work
Semantic segmentation. The goal of semantic segmenta-
tion is to generate dense pixel-wise classification. Starting
with FCN [21], which replaced the classifier’s last fully-
connected layer with a fully convolutional layer for the
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Figure 2. Training ELN along with the main segmentation network and the auxiliary decoders. (left) The main segmentation network is
trained with the ordinary cross-entropy loss Lsup, but the auxiliary decoders are trained with constrained cross-entropy losses Laux so
that they are inferior to the main segmentation network, and their predictions contain plausible and diverse errors intentionally. (right) All
predictions from the decoders are used as training input to ELN, which learns to localize errors on the predictions. Note that ELN and
other components are trained simultaneously, although their training processes are drawn separately in this figure for brevity.

first time, various approaches have been studied early. An
encoder-decoder structure has been proposed to obtain an
accurate high-resolution output [37, 40], and structures such
as ASPP [6] and PSPNet [50] have been exploited to obtain
more diverse spatial contexts. An attention mechanism has
been studied to obtain a global relation [13, 22]. However,
the success of these models requires a large amount of data,
which costs expensive labour.
Semi-supervised semantic segmentation. Attempts to
reduce the cost by applying a semi-supervised learning
scheme have been studied intensely. Several methods
[24, 30, 36] based on GAN and adversarial learning have
been studied to reduce the gap between prediction on un-
labeled and labeled data. One of the techniques frequently
used in semi-supervised learning [14, 26, 39, 41] is consis-
tency regularization. It allows the decision boundary to be
located in a low-density region by using constraints to make
the outputs of various perturbed inputs consistent with each
other. Another approach [5, 27, 35, 49], self-training, is
a method of generating pseudo labels with unlabeled data
by pre-trained model and training the model with both la-
beled and pseudo labeled data. Recently, various meth-
ods [3, 29, 51, 52] have applied contrastive learning [16] to
semantic segmentation in a semi-supervised manner, show-
ing significant performance improvement.
Self-correction networks for semi-supervised semantic
segmentation. The idea of correcting pseudo labels by
an auxiliary network has been studied in [27, 35]. They
presented networks that correct errors of pseudo labels by
learning the difference between predicted and ground truth
segmentation labels. However, it is challenging to train such
networks effectively in the semi-supervised learning setting

since the segmentation network is quickly overfitted to the
labeled data, leading to a poor generalization of correction
networks. To address this generalization issue of the pre-
vious work, we introduce a new auxiliary task called error
localization, and present ELN and its training strategy.

3. Proposed Method

Our framework consists of two-stage, learning ELN us-
ing labeled data and semi-supervised learning with ELN.
The major issue in the first stage is the lack of diversity
in predictions of the main network, which leads to a poor
generalization of ELN. To address this issue, in addition to
the main segmentation network (encoder E , decoder D), we
employ auxiliary decoders (D1

aux, ..., DK
aux) that are learned

to be inferior to the main segmentation network intention-
ally; predictions of the auxiliary decoders will depict plau-
sible and diverse errors. ELN is learned along with the seg-
mentation network and auxiliary decoders to identify errors
on their predictions. The overall procedure of ELN training
is illustrated in Fig. 2.

In the second stage, the trained ELN is then used for
semi-supervised learning of semantic segmentation, where
unlabeled images are exploited in two ways, self-training,
and contrastive learning. The role of ELN is to identify pix-
els whose pseudo labels are likely to be erroneous so that
we disregard such pixels in the process of self-training and
contrastive learning for stable and effective training.

The remainder of this section presents details of the two
stages of our method.



3.1. Learning ELN Using Labeled Data

At first, the main segmentation network is pre-trained
with the standard pixel-wise cross-entropy loss Lsup on the
set of labeled images DL. Let Lce(P, Y ) denote the stan-
dard pixel-wise cross-entropy between segmentation pre-
diction P and its ground truth label Y :

Lce(P, Y ) = −
∑
i

Y ⊤
i log(Pi), (1)

where i is the index indicating each pixel of the input and
Yi is the one-hot vector of the ground truth for pixel i. Let
P = D(E(X)) denote segmentation prediction of the main
network for an image X . Lsup is then given by

Lsup =
1

|DL|
∑

X∈DL

Lce(P, Y ), (2)

where Y is the ground truth of the input image X .
When the pre-training is completed, each auxiliary de-

coder is trained similarly to the main network but with a
constrained cross-entropy loss, which is minimized only up
to a certain multiple of Lce(P, Y ) and its gradient is not
propagated beyond the auxiliary decoder. Let K be the
number of all auxiliary decoders and k be their index. Then
the total loss for the K auxiliary decoders, denoted by Laux,
is given by

Laux =
1

|DL|
∑

X∈DL

K∑
k=1

1{Lce(P
k, Y ) > αk · Lce(P, Y )} · Lce(P

k, Y ),

(3)

where P k = Dk(E(X)) denotes segmentation prediction of
the kth decoder, and αk indicates a scale hyper-parameter
for constraining the loss applied to the kth auxiliary de-
coder. Training the auxiliary decoders in this way enables
them to produce plausibly erroneous predictions, which are
used as training input to ELN.

Given an image and its segmentation prediction as input,
ELN is trained to localize errors on the prediction through
supervised learning, where true locations of the errors are
revealed by comparing the prediction with its ground truth
counterpart. Let Ek be the pixel-wise entropy map of P k

and Bk = ELN(X⊕P k⊕Ek) denote the prediction of ELN
in the form of binary segmentation map, where ⊕ represents
channel-wise matrix concatenation. Then the binary cross-
entropy loss for ELN, LELN, is given by

LELN =
1

|DL| · (K + 1)

∑
X∈DL

K∑
k=0

Lce(B
k,Mk), (4)

where Mk denotes the ground truth mask of Bk; Mk
i is 1

if the prediction of pixel i is correct and 0 otherwise. Note
that k = 0 denotes the main decoder.

Despite using the auxiliary decoders, the population of
pixel-level binary labels in Mk is typically biased to 1 (cor-
rect), which impairs the error identification ability of ELN.
To alleviate this, a re-weighting factor is applied to pixels
with incorrect predictions in LELN for balanced training. Let
Lwce denote a weight re-adjusted pixel-wise cross-entropy
between segmentation prediction P and its binary ground
truth label Y :

Lwce(P, Y ) =

−
∑
i

(
1{Yi = 0}

∑
j 1{Yj = 1}∑
j 1{Yj = 0}

Y ⊤
i log(Pi)

+1{Yi = 1}Y ⊤
i log(Pi)

)
.

(5)

Then the loss in Eq. (4) is revised as

LELN =
1

|DL| · (K + 1)

∑
X∈DL

K∑
k=0

Lwce(B
k,Mk). (6)

The total loss minimized in the first stage for labeled data
is as follows:

Llabeled = Lsup + Laux + LELN . (7)

Note that losses in Llabeled are jointly optimized in the first
stage, although in pre-training Lsup is solely minimized.

3.2. Semi-supervised Learning with ELN

After learning ELN, the main segmentation network is
trained on the set of unlabeled images DU with two losses,
a self-training loss and a pixel-wise contrastive loss. We
adopt the mean teacher framework [43], which allows the
teacher network to provide more stable pseudo supervision
to the student network. Weights θ̃ of the teacher (Ẽ , D̃) are
updated by the exponential moving average of weights θ of
the student (E ,D) with an update ratio β:

θ̃t = βθ̃t−1 + (1− β)θt . (8)

The proposed self-training loss Lpseudo is the pixel-
wise cross-entropy loss like Lsup, but is applied only to
valid pixels identified by ELN. Let P̃ = D̃(Ẽ(X)) de-
note segmentation prediction of the teacher network and
P a = D(E(A · X)) denote that of the student network,
where A is the perturbation operator applied to the input
image X . Also, let B̃ = ELN(X ⊕ P̃ ⊕ Ẽ) be the binary
segmentation output of ELN. Then Lpseudo is given by

Lpseudo = − 1

|DU |
∑

X∈DU

∑
i

⌊B̃⌉i · Ŷ ⊤
i log(P a

i ), (9)

where ⌊⌉ is a function rounding to the nearest integer and
Ŷi denotes the one-hot vector of the pseudo label for pixel



i. Through the rounded binary mask, the main segmentation
network can be trained on valid pixels only.

In order to further improve the quality of learned fea-
tures, we adopt a pixel-wise contrastive loss Lcontra.
Specifically, in this loss, features whose pseudo labels are
the same attract each other while those from different cat-
egories are pushed away in the feature space. Instead of
applying the loss on a single image, we expand its range
to the whole input batch for considering various feature re-
lations, leading to a significant performance improvement.
For a given input, let Ωi

p denote a set of pixels belonging to
the class of pixel i and Ωi

n denote a set of pixels that do not
belong to the class of pixel i. Also, let d represent a dis-
tance function, d(f1, f2) = exp(cos(f1, f2)/τ), where cos
means the cosine similarity and τ is a temperature hyper-
parameter. The pixel-wise contrastive loss Lcontra is then
given by

Lcontra =

− 1

|V |
∑
i∈V

∑
j∈Ωi

p

log
d(fi, f̃j)

d(fi, f̃j) +
∑

k∈Ωi
n
d(fi, f̃k)

,
(10)

where V denotes the set of valid pixels on DU , fi and f̃i are
feature embeddings of pixel i from the student and teacher
networks, respectively.

The total loss for unlabeled data is as follows:

Lunlabeled = Lpseudo + Lcontra . (11)

Note that labeled data are also involved in training through
Llabeled. When training is completed, only the student
network is used at inference since the others, including
ELN, are all auxiliary modules that support semi-supervised
learning of the student.

4. Experiments
4.1. Network Architecture

We use DeepLab v3+ [8] with ResNet [18] backbone
as our segmentation network since it has been adopted in
recent papers [3, 29, 35] and shares a similar structure
with Deeplab v2 [6], that has been widely used in litera-
ture [14, 27, 36, 38].

The proposed model mainly consists of two types of net-
works, the main segmentation network and the ELN. Each
network is formed with an encoder and decoder. The en-
coder includes a ResNet [18] backbone, and the decoder (in-
cluding the auxiliary decoders) contains sub-modules such
as an atrous spatial pyramid pooling layer [6], a pixel-wise
classifier for segmentation (Seg in Fig. 1), and a projector
for feature embedding (Proj in Fig. 1). The last two mod-
ules are implemented by two 1×1 convolutional layers and
one intermediate ReLU activation layer.

Method SegNet Backbone 1/20 1/8 1/4 Full

CutMix [14] DL2 R101 66.48 67.60 - 72.54
S4GAN+MLMT [36] DL2 R101 62.9 67.3 - 73.2
GCT [27] DL2 R101 - 72.14 73.62 75.73
Alonso et al. [3] DL2 R101 67.8 69.9 - 72.6

Baseline DL3+ R50 59.88 67.63 70.56 76.6
ECS [35] DL3+ R50 - 70.22 72.60 76.29
Xin et al. [29] DL3+ R50 - 72.4 74.0 76.5
Alonso et al. [3] DL3+ R50 69.1 71.8 - 75.9

Ours DL3+ R50 70.52 73.20 74.63 -

Baseline DL3+ R101 64.47 69.52 72.95 78.24
CutMix [14] DL3+ R101 69.57 72.45 - 76.73
Xin et al. [29] DL3+ R101 - 74.6 76.3 78.2

Ours DL3+ R101 72.52 75.10 76.58 -

Table 1. mIoU value in the PASCAL VOC 2012 val set with dif-
ferent labeled-unlabeled ratios. All results of our experiments are
averaged from three different subsets of the same ratio.

Method SegNet Backbone 1/8 1/4 1/2 Full

CutMix [14] DL2 R101 60.34 63.87 - 67.68
S4GAN [36] DL2 R101 59.3 61.9 - 65.8
Alonso et al. [3] DL2 R101 63.0 64.8 - 66.4

Baseline DL3+ R50 59.88 61.86 67.63 77.70
ECS [35] DL3+ R50 67.38 70.70 72.89 74.76
Xin et al. [29] DL3+ R50 69.7 72.7 - 77.5
Alonso et al. [3] DL3+ R50 70.0 71.6 - 74.2

Ours DL3+ R50 70.33 73.52 75.33 -

Table 2. mIoU value in the Cityscapes val set with different
labeled-unlabeled ratios. All results of our experiments are av-
eraged from three different subsets of the same ratio.

We adopt ResNet-50 or ResNet-101 as the backbone of
the main network, and ResNet-34 for ELN. The backbones
are pre-trained on ImageNet, but since the input to ELN is
the concatenation of an image and tensors, its first convolu-
tional layer is accordingly re-designed and fine-tuned.

4.2. Implementation Details

Datasets. We conduct experiments on two different
datasets, PASCAL VOC 2012 [12] and Cityscapes [10].
PASCAL VOC 2012 is a standard semantic segmentation
dataset consisting of 21 classes including the background
class. The dataset has three separate subsets for training,
validation, and testing; the subsets consist of 1464, 1449,
1456 images, respectively. Following the common practice,
we use additional 9118 training images from the Segmen-
tation Boundary (SBD) Dataset [17]. During training on
PASCAL VOC 2012, we resize images to 512×512 pixels.
Cityscapes [10] is a dataset of urban driving scenes with
19 classes for objects and background stuffs. It consists
of training, validation, and testing splits with 2975, 500,
and 1525 images, respectively. Images of the dataset is ran-
domly cropped to 512× 1024.



Data augmentation. Random horizontal flip is applied to
both training datasets with the probability of 0.5. As the
perturbation operator for the semi-supervised learning, we
adopt color jittering and random grayscale with the proba-
bility of 0.2.
Optimizer. AdamW [34] is adopted with learning rate 1e-4
and weight decay 1e-5.
Hyper-parameters. For both labeled and unlabeled data,
the size of a mini-batch is 6 on PASCAL VOC 2012 and 4
on Cityscapes. We assign 20 and 50 to the first and second
auxiliary decoders, respectively. The temperature value τ
of Lcontra is set to 0.5. The update ratio β is set to 0.995.
Evaluation Metrics. We adopt the mean Intersection-over-
Union (mIoU) as an evaluation metric. During evaluation,
image of PASCAL VOC 2012 are resized to 512× 512 and
those of Cityscapes are used as-is. We conduct experiments
on several proportions of labeled data to unlabeled data for
validating our method under different conditions. For PAS-
CAL VOC 2012, we use three ratios, 1/20, 1/8, and 1/4,
while 1/8, 1/4, and 1/2 are used for Cityscapes.

4.3. Results

Performance analysis on semantic segmentation. To
demonstrate the superior performance of our method, we
compare the method with recent state-of-the-art models and
training on labeled data only (Baseline). The results of our
method on PASCAL VOC 2012 are listed in Table 1. We
abbreviate Deeplab v2 to DL2, Deeplab v3+ to DL3+ and
ResNet-50 to R50, ResNet-101 to R101. To test the perfor-
mance of our method under various conditions, we conduct
experiments on three ratios (1/20, 1/8, 1/4) with ResNet-50
and ResNet-101 as a backbone network, respectively. As
we can see from the table, our method achieves superior
performance over all other works for both backbone net-
works. It is considered that our error localization concept
is much more effective than error correction in the semi-
supervised scheme from the comparison of results between
ECS [35] and Ours. We achieve higher performance than
ECS with less labeled data; note that the performance of
ECS is 70.22 in the 1/8 ratio, while Ours is 70.52 in the
1/20. Moreover, we conduct experiments on Cityscapes on
three ratios (1/8, 1/4, 1/2) to show the generalization capa-
bility of our method. The results are displayed in Table 2,
showing that our method still outperforms other methods.
Fig. 3 and 4 show qualitative results of our method under
various ratio conditions.
Performance analysis on error localization network.
We further conduct additional experiments to compare our
method with two similar approaches to demonstrate the ef-
fectiveness of ELN. We conduct experiments on the ratio
of 1/20 to PASCAL VOC 2012 with ResNet-50 as a back-
bone network. As the first thing to compare, we consider a
simple error correction network (s-ECN) which has a sim-

Method ELN s-ECN Threshold

mIoU 70.52 67.14 67.77

Table 3. mIoU value of ELN, s-ECN and confidence score thresh-
old method. The experiment is conducted in a val set of PASCAL
VOC 2012.

Method ELN s-ECN Threshold

Precision 0.6961 0.7060 0.7054

Recall 0.9673 0.8294 0.8783

F1 score 0.7881 0.7424 0.7627

Table 4. Precision, Recall, and F1 score of the ELN, s-ECN, and
confidence score threshold method. Reported scores are averages
of all the results of each image. To compare s-ECN, we only con-
sider its error localization ability, not a correction. The experiment
is conducted on the unlabeled data of the given ratio of 1/20 to
PASCAL VOC 2012.

# of aux. decoders 0 1 2 3

α - 20 20,50 20,50,100

mIoU 69.89 70.20 70.52 71.13

Table 5. An ablation study for the model performance according
to the number of decoders and loss constrain parameter α.

ilar learning strategy as ELN; s-ECN is trained with pixel-
wise cross-entropy loss and yields a corrected segmentation
prediction as an output, not a binary mask. We choose an-
other method, performing confidence score threshold on the
output of segmentation prediction after softmax layer, with-
out an additional network. As we can see from Table 3,
ELN achieves the highest mIoU value over the other two
approaches. We also conduct another experiment to under-
stand how well each method performs error localization to
unseen data. In Table 4, ELN shows the highest F1 score
among methods. Note that results of s-ECN are worse than
Threshold; it emphasizes the limitations of the error correc-
tion scheme, implying that it does not work as intended due
to its harsh training condition. In Fig. 5 and 6, we display
our qualitative results of segmentation prediction and its bi-
nary mask.

4.4. Ablation Studies

We conduct ablation studies to investigate the impacts of
each component of the proposed method. The experiment
is based on PASCAL VOC 2012 with the ratio of 1/20, and
results are averaged over three times. We use ResNet-50 as
the backbone of the main segmentation network.
Different number of auxiliary decoders. The auxiliary



Input Image GT 1/4 1/8 1/20

Figure 3. Qualitative results on a val set of PASCAL VOC 2012 in various proportions of labeled data to unlabeled data.

Input Image GT 1/2 1/4 1/8

Figure 4. Qualitative results on a val set of Cityscapes in various proportions of labeled data to unlabeled data.

decoder plays a critical role in ELN learning. We experi-
ment with how the auxiliary decoders affect the overall per-
formance by changing the number of auxiliary decoders and
constraints parameters. The result is listed in Table 5. As re-
ported from the experiments, the performance improves as
the number of decoders increases and a high loss constrain
value is applied. It shows that various quality of segmen-
tation predictions helps the effective learning of the ELN.
Note that we could achieve sufficient performance improve-
ment with only two auxiliary decoders.

Different loss combination in Eq. (11). In the semi-
supervised learning stage, Lpseudo and Lcontra are jointly

Threshold Lpseudo Lcontra Lpseudo + Lcontra

67.77 69.14 69.30 70.52

Table 6. An ablation study on different loss combinations in mIoU.
“Threshold” in the table is the method using none of the two losses
associated with ELN but applying a confidence score threshold.

optimized. The proposed pixel-wise contrastive loss,
Lcontra, enables the training of feature embeddings in more
diverse contexts by learning the relation between images
in a batch with a standard pixel-wise cross-entropy loss



Input Image GT (a) (b) (c) (d)

Figure 5. Qualitative results on unlabeled data of training set on PASCAL VOC 2012 in the labeled ratio of 1/20. (a) Segmentation pre-
diction from the main segmentation network. (b) Ground truth binary mask. (c) Binary mask predicted by ELN. (d) Filtered segmentation
prediction by the predicted binary mask. Erroneous predictions colored in white in (d) are not used as pseudo labels.

Input Image GT (a) (b) (c) (d)

Figure 6. Qualitative results on unlabeled data of training set on Cityscapes in the labeled ratio of 1/8. (a) Segmentation prediction from
the main segmentation network. (b) Ground truth binary mask. (c) Binary mask predicted by ELN. (d) Filtered segmentation prediction by
the predicted binary mask. Erroneous predictions colored in white in (d) are not used as pseudo labels.

Lpseudo. We make a comparison to investigate effect of
each loss term in Eq. (11). As shown in Table 6, each term
contributes to the performance, and using both of them im-
proves the most.

5. Conclusion

We have presented a novel training framework suitable
for semi-supervised semantic segmentation tasks. To mit-
igate the performance degradation caused by confirmation
bias due to invalid pseudo labels, we have proposed error
localization network (ELN) and its training scheme. Our
experiments validated that ELN effectively removes error of
pseudo labels for unseen data, which demonstrate that our

learning strategy using erroneous predictions simulated by
auxiliary decoders is helpful. Our method achieved the state
of the art on both of the PASCAL VOC 2012 and Cityscapes
datasets with high generalization capability.

limitations. Due to the additional auxiliary networks, our
method needs a relatively larger amount of GPU mem-
ory during training, and as the number of auxiliary de-
coders increases, larger memory footprint is required. ELN
sometimes failed to indicate erroneous predictions that the
main segmentation network has strong confidence (i.e., low-
entropy).
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