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Abstract

Existing datasets for semantic correspondence are of-
ten limited in terms of both the amount of labeled data
and diversity of labeled keypoints due to the tremendous
cost of manual correspondence labeling. To address this
issue, we propose the first self-supervised learning frame-
work that utilizes a large amount of web videos collected
and annotated fully automatically. Our main motivation is
that smooth changes between consecutive video frames al-
low to build accurate space-time correspondences with no
human intervention. Hence, we establish space-time corre-
spondences within each web video and leverage them for
deriving pseudo correspondence labels between two dis-
tant frames of the video. In addition, we present a dedi-
cated training strategy that facilitates stable training using
web videos with such pseudo labels. Our experiments on
public benchmarks demonstrated that the proposed method
surpasses existing self-supervised learning models and that
our self-supervised learning as pretraining for supervised
learning improves performance substantially. Our code-
base for web video crawling and pseudo label generation
will be released public to promote future research.

1. Introduction

The task of semantic correspondence [9, 10, 40], i.e.,
finding correspondences between images with intra-class
variations as well as viewpoint changes, is a challenging
problem in computer vision, and has interesting applica-
tions such as object discovery [3, 4, 51], few-shot segmen-
tation [13, 21, 39], and visual localization [53, 56, 58].
Recently, learning-based methods have driven remarkable
advances in this field [6, 11, 15, 17, 19, 24, 25, 34, 38,
42, 46, 47, 49, 60]. Despite their success, however, there
is a critical obstacle to learning more robust matching:
the lack of large-scale densely annotated data for train-
ing. Manual annotation of point-to-point correspondences
is prohibitively costly since the number of image pairs and
that of keypoints to match are both huge. Hence, existing
datasets [2, 9, 10, 22, 41, 43, 57, 63, 69] are limited in terms
of both the amount of labeled data and the diversity of an-

notated keypoints. This issue may be critical in particular
for recent learning-based methods, which commonly rely
on data-hungry models like deep neural networks.

In this paper, we tackle the issue of limited training
data by learning with web-crawled videos. The reason for
leveraging web-crawled videos is three-fold. First, videos
are abundant and readily available on web repositories like
YouTube, and thus allow us to construct a large-scale train-
ing dataset. Second, two temporally distant frames sam-
pled from the same clip often capture non-trivial geomet-
ric/photometric variations of objects, and thus when aug-
mented differently, they well simulate common inputs of
the semantic correspondence task, i.e., different images
of the same class [41]. Third, while it is not straight-
forward to obtain correspondences between two distant
frames, their intermediate frames in the clip bridge the gap
with smooth changes, facilitating to compute reliable space-
time correspondences over the frames without any super-
vision [6, 20, 26, 27, 31, 55, 61, 64, 65, 68]. Our strat-
egy is thus to learn with random pairs of distant frames
in automatically-crawled video clips while leveraging their
space-time correspondences as pseudo labels.

However, using web videos for learning semantic corre-
spondence introduces new challenges, such as failures of
video retrieval and unreliable pseudo correspondence la-
bels. Indeed, we need specialized methods for both dataset
construction and learning using web videos. First, we de-
velop an algorithm for collecting and annotating videos in a
fully automatic manner, which is illustrated in Fig. 1. Our
algorithm examines the retrieved videos by classifying their
thumbnail images so that only videos with correct thumb-
nails are downloaded. Then each downloaded video is di-
vided into clips with no abrupt transition that guarantee sta-
ble space-time correspondences. Also, our pseudo label-
ing pipeline detects outliers from the established correspon-
dences to remove potentially incorrect pseudo labels.

Moreover, we present the first framework for learning
semantic correspondence using such web videos as training
data. The framework, depicted in Fig.2, leverages random
pairs of distant frames along with their pseudo correspon-
dence labels to train a network. In addition, a domain adver-
sarial learning strategy [8] is employed to close the domain
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Figure 1. Our algorithm for collecting web videos (Section 3.2) and annotating them with pseudo correspondence labels (Section 3.3) fully
automatically. The algorithm first downloads only thumbnail images and classify them to identify relevant videos. The relevant videos are
then downloaded and divided into multiple clips with no abrupt transition. The algorithm trains a space-time correspondence model with
the clips to generate dense pseudo correspondence labels for arbitrary pairs of frames of the clips.

gap between the web videos and common image datasets
for the task.

The proposed framework was evaluated and compared
with previous work on three public datasets, PF-Willow [9],
PF-PASCAL [10], and SPair-71K [41], where it substan-
tially outperformed existing self-supervised models, and
improves performance of the state-of-the-art supervised
learning model through transfer learning. In consequence,
our work achieved the best on all the datasets in both self-
supervised and strongly-supervised learning settings. Our
major contribution is four-fold:

• We present the first attempt to utilize web videos for
learning semantic correspondence in a self-supervised
learning manner.

• We provide a fully automatic process for dataset con-
struction and labeling using web videos. Our strategy
exploits the exclusive advantages of videos over images
for generating accurate pseudo correspondence labels.

• Our method outperformed existing self-supervised learn-
ing models and even substantially improved supervised
learning performance through transfer learning.

• Our codebase for crawling and pseudo-labeling web
videos will be open to public to promote future research.

2. Related Work

Semantic Correspondence. The task of semantic cor-
respondence [9, 10, 40] has the objective of establish-
ing correspondences between images with intra-class varia-
tions and viewpoint changes. Early approaches [5, 36, 57]
utilized hand-crafted features to describe keypoints to be
matched. Recent methods [6, 11, 15, 17, 19, 24, 25, 34,
38, 42, 46, 47, 49, 60] have shown remarkable progress by
learning features and matching pipelines through deep neu-
ral networks using manually annotated datasets [2, 9, 10,

22, 41, 43, 57, 63, 69]. However, existing datasets are of-
ten limited in terms of the amount of image pairs and the
number/diversity of keypoints annotated due to the tremen-
dous annotation cost of point-to-point correspondences; this
issue could be crucial in particular for the recent learning
based methods. To address this issue, self-supervised learn-
ing strategies have been incorporated into semantic corre-
spondence models [30, 37, 47, 59, 60]. One example is to
synthesize image pairs with ground-truth correspondences
by warping a real image for training. However, such syn-
thetic geometric transformations usually fail to simulate
intra-class variations exhibited in the real world. Another
approach to dealing with the issue of limited training data is
weakly supervised learning [15, 24, 46, 50], which utilizes
only image-level class labels that indicate if a pair of im-
ages are of the same class. Also, a semi-supervised learning
method [23] has been introduced to generate a large amount
of pseudo correspondence labels of existing training data
and exploit them to further improve performance.
Space-Time Correspondence. Space-time correspondence
aims at finding correspondences across frames of a video
clip [16, 20, 26, 27, 32, 55, 62, 66, 68]. The task has been
addressed by self-supervised learning on unlabeled videos.
Examples of pretext tasks for such self-supervised learn-
ing include color reconstruction [26, 27, 61], image recon-
struction using auto-encoder [32], and cycle-consistency in
time [16, 65, 68]. In particular, Jabri et al. [16] proposed a
probabilistic framework using a contrastive random walk.
Our pseudo label generation technique is built upon the
method of Jabri et al. [16] to find dense space-time cor-
respondences within each web video. The web videos and
their pseudo labels are in turn used to learn a semantic cor-
respondence model working on image pairs.

3. Method
Our framework consists of three stages: (1) retrieving

videos from a web repository, (2) building space-time corre-
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Figure 2. An overview of our framework using web videos. The web videos are used for conventional supervised learning of the base
model (CATs [6] in this figure). Additionally, a common dataset is employed for domain adaptation learning, aiming to bridge the domain
gap between the web videos and the common dataset without any form of supervision from the dataset.

spondences for each web video, and (3) training a semantic
correspondence model with random pairs of distant frames
sampled from the web videos while leveraging their space-
time correspondences as pseudo labels. The first two stages
are depicted in Fig. 1 and the last stage is illustrated in
Fig. 2. The remainder of this section first provides prelimi-
naries to our work and then elaborates on the three stages.

3.1. Preliminaries

Let Is and It be source and target images that exhibit
semantically similar objects. The goal of semantic corre-
spondence is to match keypoints between Is and It. To
build correspondence between two images, a feature extrac-
tion network firstly extracts feature maps F ∈ Rh×w×c,
where h × w is the spatial resolution and c is the num-
ber of channels. Then we compute a correlation map C ∈
Rhw×hw, where C(i, j) = F i

t
⊤
F j
s represents similarity be-

tween pixel i of Ft and pixel j of Fs. Unfortunately, this
initial correlation map is often ambiguous and vulnerable
to repetitive or textureless correspondence. Recent meth-
ods [6, 19, 29, 38, 40, 48, 49] remedy this by employing the
cost aggregator to obtain a refined correlation map C′ from
the initial correlation map C. We adopt CATs [6] as our
base model for semantic correspondence. We also utilize
common datasets [9, 10, 41] without their labels for closing
the domain gap between images and videos.

3.2. Crawling Videos from Web Repository

Suppose that we have access to common semantic cor-
respondence datasets for a set of pre-defined object classes.
The first step to video crawling is to retrieve videos relevant
to the object classes from YouTube using the class labels
as search queries. However, the retrieved videos could be

irrelevant to the classes of our interest due to errors of the
search engine or the semantic ambiguity of the class labels
as search queries (e.g., when the class labels have multi-
ple meanings). To mitigate this issue, following Hong et
al. [14], we first download only the thumbnail images of
the retrieved videos and then classify the images using a
simple classifier trained for the classes of our interest us-
ing the labeled datasets; a video is downloaded only when
its thumbnail classification score for the class label used as
search query exceeds a predefined threshold.

Even though possibly irrelevant videos are filtered out in
this manner, downloaded videos could be still inappropriate
for estimating pseudo correspondence labels through space-
time correspondence due to abrupt transitions between ad-
jacent frames (i.e., shot changes). Hence, each downloaded
video is divided into multiple clips, each of which has no
abrupt transition, through a shot detection method [1].

3.3. Generating Pseudo Labels for Web Videos

Our next step is to generate pseudo correspondence la-
bels for the video clips obtained in Section 3.2. To this
end, we first establish dense space-time correspondences
for every pair of consecutive frames in every clip by train-
ing and deploying a self-supervised space-time correspon-
dence model with no human intervention.1 The established
space-time correspondences are then used to derive pseudo
correspondence labels between any arbitrary pairs of frame
images. Since consecutive frames of each clip show smooth
motions with no abrupt transition thanks to our video col-
lection strategy in Section 3.2, the model can be trained
stably and accordingly build accurate correspondences be-

1We adopt CRW [16] for this purpose, but any other recent space-time
correspondence model can be incorporated.
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tween consecutive frames.
Given the trained space-time correspondence model,

pseudo correspondence labels are generated by propagating
keypoints of the first frame to the remaining frames in the
same clip; every pixel location of the first frame is consid-
ered as a keypoint as there is no manual keypoint annotation
for the web videos. Let ϕ be an encoder of the space-time
correspondence model and F = ϕ(I) be a feature map of
an input image I . Then we compute the inter-frame affinity
matrix Ak, k+1 ∈ Rm×m, where m is the number of pixels
in each frame, as follows:

Ai, j
k, k+1 = cos

(
F i
k, F

j
k+1

)
, (1)

where cos denotes the cosine similarity function and F i
k de-

notes the feature vector of pixel i of frame k. The affinity
matrix Ak, k+1 represents inter-pixel semantic affinity be-
tween two consecutive frames k and k + 1.

Given the affinity matrices between all pairs of consecu-
tive frames, the keypoints of the first frame are propagated
sequentially to the other frames to build dense space-time
correspondences within the clip. Let yk ∈ Nm indicate
keypoint IDs of pixels in frame k (i.e., yi

k indicates the ID
of the keypoint held by pixel i of frame k). Then yk is
propagated to frame k + 1 for estimating yk+1 through the
inter-frame affinity matrix as follows:

yj
k+1 = yℓ

k, where ℓ = argmax
i

(
Ai, j

k, k+1

)
. (2)

To improve the accuracy of the pseudo correspondence
labels, we detect and eliminate false label propagation. This
is achieved by applying Isolation Forest [33], an algorithm
devoted to outlier detection, to the pseudo labels generated
by Eq. (2). We assume that a majority of the labels prop-
agated between successive frames will exhibit similar de-
grees of change in their positions. Through Isolation Forest,
we measure the degree of change in the x and y axes for
each propagated label, and then identify and remove any la-
bels with an unusual amount of change. This process leads
to error-resistant pseudo correspondence labels.

Given these results, pseudo correspondence labels be-
tween two arbitrary frames k and k′ of each clip are ob-
tained simply by identifying keypoints co-occuring at both
of the frames, i.e., the intersection between yk and yk′ .

3.4. Learning Correspondence with Web Videos

Our learning framework mainly utilizes the web video
dataset constructed in the previous section along with a
common dataset for the task. Details of our training strategy
using are illustrated in the following sections.

3.4.1 Supervised Learning with Web Videos

For supervised learning using web videos, we follow the
training objective used in [6, 38, 40, 42]. Given generated

pseudo keypoints for each randomly picked pair of images,
we first generate the pseudo ground-truth flow field Fgt as
in [40], and transform the refined correlation map C′ into an
estimated flow field Fest. Then the supervised loss, called
average end-point error [37], is applied to the two flow fields
as follows:

Lsup = ∥Fgt − Fest∥2. (3)

3.4.2 Domain Adaptive Learning

We adopt a domain adaptive learning technique to mitigate
possible negative effect of the domain gap between images
of common correspondence datasets and web videos in a
feature space. The objective is to train the correspondence
model in such a way that its features for web videos and a
common dataset are indistinguishable to the discriminator.
For this purpose, we employ a gradient reversal layer [8].
Let d be the discriminator and Dw and Dc represent the
set of frame images from web videos and a common image
dataset, respectively. Then the domain adaptation loss is
given by

Ldomain =
1

|Dc|
∑

Xc∈Dc

Lce

(
d
(
r(Gc)

)
, c
)
+

1

|Dw|
∑

Xw∈Dw

Lce

(
d
(
r(Gw)

)
,w

)
,

(4)

where r indicates the gradient reversal layer and Lce denotes
the cross-entropy loss. w and c are domain labels indicating
web videos and common image data, Gw and Gc are fea-
ture maps of given images Xw and Xc from the semantic
correspondence model, respectively.

The total loss for our framework is then given by

Ltotal = Lsup + λLdomain, (5)

where λ is a loss re-scaling factor.

4. Experiments
4.1. Implementation Details

Network architecture. We adopt CRW [16] for pseudo
labeling of web videos in Section 3.3, and CATs [6] as our
base semantic correspondence model for the training in Sec-
tion 3.4. Their backbones are both ResNet [12]: ResNet-18
for the encoder of CRW, and ResNet-101 for the feature ex-
traction network of CATs. Note that we use the same hyper-
parameters for the training of CRW and CATs, as they re-
ported in the paper. ResNet-18 is used for the thumbnail
classifier in Section 3.2. For the domain adaptation learn-
ing using our web videos (Ldomain in Section 3.4), we use
the last feature maps before its channel-wise averaged in
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Method Supervision type Supervision Signal PF-PASCAL PF-Willow SPair-71k
0.05 0.1 0.15 0.05 0.1 0.15 0.1

SF-Net ResNet-101 [28]

Weak-sup.

bounding box 53.6 81.9 90.6 46.3 74.0 84.2 -
Weakalign ResNet-101 [46]

image-level label

49.0 74.8 84.0 37.0 70.2 79.9 20.9
RTNs ResNet-101 [24] 55.2 75.9 85.2 41.3 71.9 86.2 25.7
NC-Net ResNet101 [50] 54.3 78.9 86.0 33.8 67.0 83.7 20.1
PCSNet-SE ResNet101 [18] 59.8 80.3 88.5 42.6 75.1 88.0 26.5

PF HOG [10] None - 31.4 62.5 79.5 28.4 56.8 68.2 -
CNNGeo ResNet-101 [47]

Self-sup. synthetic image pairs
41.0 69.5 80.4 36.9 69.2 77.8 20.6

A2Net ResNet-101 [54] 42.8 70.8 83.3 36.3 68.8 84.4 22.3
PMD ResNet-101 [30] - 80.5 - - 73.4 - -
Ours ResNet-101 Self-sup. synthetic keypoints 50.7 80.6 90.0 44.5 74.7 87.9 27.3

Table 1. Comparisons with self/weakly-supervised methods in PCK (%) on PF-PASCAL, PF-Willow, and SPair-71k. The backbone
network of each method is indicated in the subscript. The best and the second best results are marked in bold and underline, respectively.

Method Supervision type Supervision Signal PF-PASCAL PF-Willow SPair-71k
0.05 0.1 0.15 0.05 0.1 0.15 0.1

SCNet VGG-16 [11]

Strong-sup. keypoints

36.2 72.2 82.0 38.6 70.4 85.3 -
ANC-Net ResNet-101-FCN [29] - 86.1 - - - - 28.7
HPF ResNet-101 [40] 60.1 84.8 92.7 45.9 74.4 85.6 28.2
DHPF ResNet-101 [42] 75.7 90.7 95.0 49.5 77.6 89.1 37.3
CHMNet ResNet-101 [38] 80.1 91.6 94.9 52.7 79.4 87.5 46.3
MMNet ResNet-101 [67] 77.6 89.1 94.3 - - - 40.9
TransforMatcher ResNet-101 [25] 80.8 91.8 - - 76.0 - 53.7
CATs ResNet-101 [6] 75.4 92.6 96.4 50.3 79.2 90.3 49.9
Ours ResNet-101 Strong-sup. (transferred) keypoints 80.4 93.6 96.8 54.8 80.9 91.0 54.0

Table 2. Comparisons with supervised methods in PCK (%) on PF-PASCAL, PF-Willow and SPair-71k. The backbone network of each
method is indicated in the subscripts. The best and the second best results are marked in bold and underline, respectively.

Methods aero. bicy. bird boat bott. bus car cat chai. cow dog hors. mbik. pers. plan. shee. trai. tv all
CNNGeo [47] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6
A2Net [54] 22.6 18.5 42.0 16.4 37.9 30.8 26.5 35.6 13.3 29.6 24.3 16.0 21.6 22.8 20.5 13.5 31.4 36.5 22.3
WeakAlign [46] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9
NC-Net [50] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1
HPF [40] 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6 28.2
SCOT [34] 34.9 20.7 63.8 21.1 43.5 27.3 21.3 63.1 20.0 42.9 42.5 31.1 29.8 35.0 27.7 24.4 48.4 40.8 35.6
DHPF [42] 38.4 23.8 68.3 18.9 42.6 27.9 20.1 61.6 22.0 46.9 46.1 33.5 27.6 40.1 27.6 28.1 49.5 46.5 37.3
CHMNet [38] 49.1 33.6 64.5 32.7 44.6 47.5 43.5 57.8 21.0 61.3 54.6 43.8 35.1 43.7 38.1 33.5 70.6 55.9 46.3
MMNet [67] 43.5 27.0 62.4 27.3 40.1 50.1 37.5 60.0 21.0 56.3 50.3 41.3 30.9 19.2 30.1 33.2 64.2 43.6 40.9
TransforMatcher [25] 59.2 39.3 73.0 41.2 52.5 66.3 55.4 67.1 26.1 67.1 56.6 53.2 45.0 39.9 42.1 35.3 75.2 68.6 53.7
CATs [6] 52.0 34.7 72.2 34.3 49.9 57.5 43.6 66.5 24.4 63.2 56.5 52.0 42.6 41.7 43.0 33.6 72.6 58.0 49.9
SemiMatch [23] 53.6 37.0 74.6 32.3 47.5 57.7 42.4 67.4 23.7 64.2 57.3 51.7 43.8 40.4 45.3 33.1 74.1 65.9 50.7
Ours 55.8 38.8 77.3 38.2 52.7 57.5 50.0 67.8 25.4 65.4 63.8 59.3 44.2 49.7 40.4 41.7 75.3 70.5 54.0

Table 3. Per-class quantitative results in PCK (%) (αk = 0.1) on SPair-71K. The best and the second best results are marked in bold and
underline, respectively.

the cost aggregator. The discriminator used in Ldomain con-
sists of two 3×3 convolutional layers followed by two fully-
connected layers.

Web video dataset. We collect 2,124 videos retrieved in
Section 3.2 and get 36,879 clips with 2,806,736 frame pairs;
object classes of PF-PASCAL, PF-WILLOW, and SPair-
71K are used as search queries for the video retrieval. The

thumbnail classifier used in Section 3.2 is trained on the
PASCAL VOC dataset. We use the same pseudo correspon-
dence labels for all conducted experiments.

Datasets for evaluation. We conduct experiments on the
three standard benchmarks for semantic correspondence,
SPair-71K [41], PF-PASCAL [10], and PF-Willow [9].
SPair-71k contains 70,958 image pairs with diverse view-
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(a) CATs [6] (b) Ours (transferred) (c) Ground-truth

Figure 3. Qualitative results on SPair-71K [41] test set.

point and scale variations. PF-PASCAL provides 1,351
image pairs from 20 categories of the PASCAL VOC [7]
dataset, and PF-Willow provides 900 image pairs from
4 categories. Note that all previous weakly, self-, and
strongly-supervised methods evaluated in Table 1 and Ta-
ble 2 follow the standard evaluation protocol [6, 15, 40, 42]:
For SPair-71K, they are trained and evaluated on the train-
ing and test splits, respectively, while for PF-PASCAL and
PF-Willow, they are trained on the training split of PF-
PASCAL and evaluated on the test split of each dataset.
Data augmentation. We use the same photometric aug-
mentation lists as in [6] for data augmentation. Random
horizontal flip, random perspective transform, color jitter-
ing, and random grayscale are applied differently to differ-
ent frames of the same clip.
Optimizer. We adopt AdamW [35] optimization with
learning rate of 3e-5 and weight decay of 0.05.
Hyper-parameters. The threshold for thumbnail classifi-
cation scores in Section 3.2 is set to 0.8, following [14].
The loss re-scaling parameter λ of Ldomain is set to 0.025.
The number of estimators used in Isolation Forest is set to
100 following its default setting.
Software. We mainly use Pytorch [44] for a deep learning
framework and Scikit-learn [45] for Isolation Forest.

Evaluation metric. We adopt the percentage of cor-
rect keypoints (PCK) as the performance metric. Given
a set of estimated and ground-truth keypoint pairs K =
{(kest(m), kGT(m)}, PCK is computed by

PCK(K) =

1

M

M∑
m=1

1[∥kGT(m)− kest(m)∥ ≤ αk · max(H,W )],
(6)

where M is the number of keypoint pairs, H and W are
the width and height of the entire image or object bounding
box, and αk is a scale factor.

4.2. Results

Comparison with self/weakly-supervised methods. We
first compare our approach to self-supervised methods [30,
47, 54] and weakly-supervised methods [18, 24, 28, 46, 50].
In this setup, we train our model using pseudo labels gen-
erated from web videos for matching supervision, and the
common dataset [9, 10, 41] for domain adaptation learning.
Our method achieves state-of-the-art results, as shown in
Table 1, with 27.3% PCK@0.1 for the challenging SPair-
71K dataset, surpassing all other self-supervised and even
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Figure 4. Qualitative results of pseudo correspondence labels on web-crawled videos. We randomly sampled eight keypoints for pseudo
correspondence labels of each frame pair. Note that source and target images are augmented differently.

weakly-supervised methods. For PF-PASCAL, our method
consistently outperforms previous self-supervised methods,
achieving 80.6% PCK in the PCK@0.1 setting. Similarly,
for PF-Willow, our method demonstrates its effectiveness,
outperforming all previous self-supervised methods. It is
important to note that our model primarily trains on pseudo
labels generated from web videos, and the other common
datasets are only used for domain adaptation learning with-
out any supervision.
Comparison with strongly-supervised methods. We con-
ducted a comparison between our method and recent state-
of-the-art strongly-supervised models to demonstrate the ef-
fectiveness of our approach. We employed transfer learn-
ing, where the model was initially trained on pseudo labels
from web videos and then fine-tuned on the target common
dataset only with the supervised learning loss in Eq. (3).
The results, presented in Table 2, show that our method
achieves state-of-the-art performance. For PF-PASCAL,

we obtained 96.8% PCK@0.15 and 93.6% PCK@0.1, and
for PF-Willow, we achieved 54.8% PCK@0.05, 80.9%
PCK@0.1, and 91.0% PCK@0.15. Additionally, our
method demonstrates significant performance improvement
on SPair-71K, with a PCK@0.1 score of 54.0%. We further
compare our method with the others in terms of per-class
accuracy on SPair-71K, showcasing their performance in
detail. As shown in Table 3, our method achieves the best
or second-best for almost all classes of SPair-71K, outper-
forming other methods in 9 out of the 18 classes. Its average
PCK performance is 54.0%.
Qualitative analysis. Fig. 3 displays our results on SPair-
71K, while Fig.4 exhibits example frame pairs with pseudo
correspondence labels obtained from web-crawled videos.

4.3. Ablation Studies

We conduct ablation studies to investigate the effective-
ness of each component of the proposed method. The ex-
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λ 0.0025 0.005 0.025 0.05 0.25 0.5
PCK@0.1 27.0 26.9 27.3 27.0 26.5 27.1

Table 4. Impact of λ in Eq. (5) on SPair-71K test set.

Lsup Ldomain PCK@0.1

✓ ✓ 27.3

✓ ✗ 25.7

Table 5. Ablation studies of different loss combinations in Eq. (5)
in PCK@0.1 on SPair -71K [41] test set.

ORB ISF PCK@0.1

✓ ✗ 15.2

✗ ✗ 22.5
✗ ✓ 27.3

Table 6. Ablation studies of our pseudo label generation method
in PCK@0.1 on SPair-71K [41] test set. ORB denotes using ORB
algorithm [52] to directly generate pseudo labels (find correspon-
dence between two images) instead of using space-time correspon-
dence encoder, and ISF denotes using the error filtering technique
based on Isolation Forest [33].

periments were conducted on the test set of SPair-71K [41].
Impact of λ in Eq. (5). As shown in Table 4, our method
is not sensitive to the value of λ, the best performance was
achieved when λ = 0.025 though.
Loss component analysis in Eq. (5) . In the learning phase
described in Section 3.4, Lsup and Ldomain are jointly opti-
mized. The domain adaptation loss, Ldomain, is used to min-
imize the negative impact of the domain gap between the
common dataset and web videos in the feature space of the
correspondence model. We conducted a comparison to in-
vestigate the effectiveness of each loss term in Eq. (5). The
results, presented in Table 5, indicate that each term con-
tributes to the overall performance, and the best results are
achieved when both losses are utilized.
Analysis on pseudo label generation method. In the
pseudo label generation stage described in Section 3.3, we
first utilize a space-time correspondence encoder to create
pseudo correspondence labels from web videos. These la-
bels are then filtered to remove any erroneous ones using the
Isolation Forest algorithm [33]. In this section, we make
a comparison to investigate effect of pseudo label genera-
tion strategy. First, to demonstrate the effectiveness of our
approach using the space-time correspondence encoder, we
train our model with pseudo labels generated by off-the-
shelf image feature matching algorithm, ORB [52], instead
of using the encoder, under the same conditions (e.g. aug-

(a) (b)

Figure 5. Qualitative results of some failure cases of pseudo cor-
respondence labels on web-crawled videos, where the pattern of
texture is iterative (a) or featureless (b).

mentation) with our method. The results, as shown in the
first row of Table 6, demonstrate poor performance with
only 15.2% PCK@0.1 compared to our approach, which
achieved 27.3% PCK@0.1. Second, we train our model
using pseudo labels that were not filtered by the Isola-
tion Forest algorithm [33]. As demonstrated in the sec-
ond and third rows of Table 6, applying the filtering algo-
rithm significantly improved the performance of the model.
Based on these findings, we may conclude that utilizing the
space-time encoder to find correspondences in web videos
is highly effective, and applying the error filtering algorithm
enhances performance effectively.

5. Limitation and discussion

Although our method could capture dense and reliable
correspondence on consecutive frames, there are some fail-
ure cases where textures are iterative (Fig. 5(a)) or feature-
less (Fig. 5(b)). We believe developing an algorithm that
detects or corrects possible errors on space-time correspon-
dences of web videos by using readily available labeled data
could be one of the promising future directions.

6. Conclusion

We have presented a self-supervised learning framework
for semantic correspondence with the process for dataset
construction and pseudo labeling using web videos. To mit-
igate the lack of large-scale dense annotation data for the
training of semantic correspondence, we retrieve a large
amount of videos from the web repository and generate
pseudo correspondence labels by utilizing the space-time
correspondence model. We then train a model with the
pseudo correspondence labels and a common dataset. Our
framework substantially improved performance over exist-
ing self-supervised methods for all three benchmarks.
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