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Abstract. Tracking by sequential Bayesian filtering relies on a graph-
ical model with temporally ordered linear structure based on temporal
smoothness assumption. This framework is convenient to propagate the
posterior through the first-order Markov chain. However, density prop-
agation from a single immediately preceding frame may be unreliable
especially in challenging situations such as abrupt appearance changes,
fast motion, occlusion, and so on. We propose a visual tracking algorithm
based on more general graphical models, where multiple previous frames
contribute to computing the posterior in the current frame and edges be-
tween frames are created upon inter-frame trackability. Such data-driven
graphical model reflects sequence structures as well as target character-
istics, and is more desirable to implement a robust tracking algorithm.
The proposed tracking algorithm runs online and achieves outstanding
performance with respect to the state-of-the-art trackers. We illustrate
quantitative and qualitative performance of our algorithm in all the se-
quences in tracking benchmark and other challenging videos.
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1 Introduction

Most of online probabilistic tracking algorithms employ graphical models with
linear structure and estimate the target state sequentially, where the inference
of the posterior is based only on the immediately preceding frame due to the
first-order Markov assumption. These methods reduce search space for obser-
vation by relying on temporal smoothness assumption between two consecutive
frames. However, they underestimate other kinds of challenges—for example,
radical appearance changes, fast motion, shot changes, and occlusion—and the
potential benefit from the collaboration of multiple frames. Therefore, we claim
that tracking algorithms should consider the characteristics of target and scene
in addition to temporal smoothness and that more general graphical models can
reduce tracking errors by propagating densities from multiple tracked frames.

We propose a novel online tracking algorithm beyond the first-order Markov
chain, where a more general graph structure is obtained during tracking to adapt
sequence structure and propagate the posterior over time. Multiple preceding
frames propagate density functions to estimate the optimal target state in the
current frame, and the choice of the frames depends on the characteristics of
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Fig. 1. Framework of our algorithm compared to existing methods. Nodes correspond
to frames whose intensities encode the characteristics observed in individual frames.
The numbers in the nodes indicate frame indices. (a) Chain model propagates densities
sequentially regardless of the characteristics of frames. (b) Bayesian model averaging [1]
tracks target in an increasing order of variations and makes a blind average of the
posteriors from all previously tracked frames. (c) Our algorithm measures the tracking
feasibility between frames, and the density functions are propagated from only relevant
frames through a more flexible graphical model compared to (a) and (b).

target and scene. In other words, our framework learns a general directed graph-
ical model actively and tracks a target under the identified graphical model. The
proposed framework has some common properties with [1], which also employs a
more complex graphical model and estimates the posterior using Bayesian model
averaging, but has the following critical differences: 1) our algorithm runs on-
line while [1] is an offline technique, 2) we actively identify appropriate frames
for density propagation instead of blind model averaging, and 3) the proposed
algorithm is more efficient due to the reduction of the number of posterior prop-
agations. The main concept of our framework is illustrated in Figure 1; instead
of using all the tracked frame for density propagation as shown in Figure 1(b),
we adaptively determine appropriate frames to improve tracking performance
and reduce computational complexity as shown in Figure 1(c). Note that we can
avoid further density propagation from the frames with very different character-
istics and isolate tracking errors in such frames naturally.

Given a graphical model constructed with tracked frames, we identify a set
of nodes in the graph from which the new frame is connected based on tracking
plausibility so that we obtain the updated graphical model. Finding the appro-
priate nodes to track from in the current graphical model is computationally
expensive, so we maintain a small subset of representative frames to facilitate
the procedure. Once the new graphical model is obtained, we propagate the
posterior density to the new frame by an efficient patch matching technique [2].
Our approach has something common with the methods based on multiple tar-
get templates [3–5] but is clearly different from them because we propagate the
posteriors to the current frame from multiple parents using the identified graph-
ical model; it is more advantageous to preserve multi-modality in the posterior.
Now, we have an online tracking algorithm that learns a graph structure and
solves target tracking jointly. The main contributions of our tracking algorithm
are summarized below:

• We propose an adaptive and active algorithm to identify a general graphical
model for tracking based on the sequence structure characterized by target
and scene.
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• Our tracking algorithm estimates the posterior through a selective aggrega-
tion of propagated densities, which overcomes the limitation of blind density
averaging and isolates tracking errors within local branches in graph.
• The proposed tracking algorithm runs online and improves tracking perfor-

mance significantly by handling various challenges effectively.

This paper is organized as follows. We first review related work in Section 2,
and describe the overall framework of our algorithm in Section 3. The detailed
formulation and methodology are described in Section 4 and Section 5 illustrates
experimental results.

2 Related Work

Visual tracking algorithms are composed of tracking control and observation,
and each algorithm is typically constructed by a combination of two components.
There are several options in tracking control, which include local optimization
methods, sampling-based approaches and tracking-by-detection framework. Lo-
cal optimization methods [6–8] are simple and easy to implement, but may be
stuck at local optima. To avoid this limitation, many tracking algorithms em-
ploy sampling based density propagation techniques, which are based on either
sequential Bayesian filtering [9, 3, 4, 10, 5] or MCMC [11]. Recently, thanks to
the advance of object detection technique, tracking-by-detection approaches are
used widely [12–14], which can also be regarded as dense sampling method.

All the tracking algorithms listed above depend on linear graphical model or
sequential processing based on the first-order Markov assumption. They focus on
the density propagation or the optimal search problem between two temporally
adjacent frames. This framework is useful to exploit temporal smoothness be-
tween frames but has critical limitations in handling the challenges violating the
property, i.e., significant appearance changes, shot changes, and occlusion. To
ameliorate these problems, [11] proposes an online tracking algorithm to prop-
agate the posterior by MCMC sampling, [15] utilizes high-order Markov chain,
and [16] models occlusion explicitly using a SVM-based classifier. However, note
that these efforts are still limited to the optimization of target state given the
information of target and tracker state in the a single or at most a few preceding
frame(s). Recently, [1] proposes an offline algorithm to actively search a suitable
order of frames for tracking, where the posterior of a new frame is estimated by
propagating posteriors from all tracked frames and aggregating them through
Bayesian model averaging. Although these methods do not rely on chain mod-
els any more, the graphical model for tracking is fixed and are not adaptive to
the characteristics of the input video. Also, note that most of offline tracking
algorithms still depend on linear graphical model [17–21].

Another main challenges in visual tracking is how to maintain the appearance
of target in a robust manner. Many tracking algorithms have been investigating
this problem and some promising solutions have been proposed such as template
update [22, 23, 6], sparse representation [3–5], incremental subspace learning [9],
multi-task learning [10], multiple instance learning [13], P-N learning [12], and
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Fig. 2. Procedure of the proposed algorithm performed in a frame. (a) When a new
frame (red hollow node) is given, each representative frame (shaded in pink) propagates
the posterior to the new frame, creating a corresponding edge in the existing graphical
model. (b) Propagated posteriors from all representative frames are weighted and ag-
gregated to compute the final target posterior in the new frame. (c) The target state
is estimated and the list of representative frames is updated if necessary.

so on. Although robust appearance models enable tracker to handle various
appearance changes effectively, fundamental limitation of sequential approaches
by linear graphical models—its weakness to temporal failures and multi-modal
variations—still remain. This is partly because tracking control and observation
are investigated separately even though joint optimization of the two problems
is potentially helpful to improve overall performance.

Contrary to prior studies, our approach couples the two components more
tightly. We employ preliminary observation to determine the structure of graph-
ical model, and the adaptively identified graphical model facilitates robust ob-
servation. This procedure performs online, and we implement an online tracking
algorithm based on the adaptively constructed graph structure.

3 Algorithm Overview

The main goal of this work is to progressively construct a graphical model that
is appropriate for tracking but is not necessarily limited to chain models, and
sequentially estimate the posterior of target state xt at the tth frame given ob-
servation y1:t. When a new frame t arrives, our algorithm selectively propagates
density functions to estimate the posterior P (xt|y1:t). To reduce the compu-
tational cost, we maintain the m most representative frames within the graph,
Tt−1 = {t(1), ..., t(m)} (m� t−1), in an online manner and allow only the frames
in Tt−1 to propagate densities to frame t with relevant weights. Our algorithm
performs the following procedures to track the target and update the graphical
model at each frame:

1. Density propagation step propagates density functions from P (xu|y1:u)
∀u ∈ Tt−1 to the frame t through a patch matching technique [2], and creates
an edge from each frame in Tt−1 to the frame t.
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2. Density aggregation step estimates the target posterior P (xt|y1:t) by a
weighted Bayesian model averaging, where the weight of each edge is com-
puted based on its tracking plausibility.

3. Model update step first evaluates the reliability of the tracking result
and updates the model if necessary. Specifically, if the tracking result at
frame t is also more reliable and distinctive than the frames in Tt−1, the
new representative frame set Tt is obtained by adding frame t to Tt−1 and
removing the least appropriate one from Tt−1. Otherwise, we set Tt = Tt−1.

These three steps are illustrated in Figure 2, and we discuss the detailed proce-
dure of each step in the next section.

4 Main Algorithm

This section describes our main algorithm, which includes progressive graph con-
struction technique and density propagation through weighted Bayesian model
averaging [24]. We first present how the target posterior is estimated by the
weighted Bayesian model averaging based on patch matching [2]. Then we dis-
cuss how to construct a general graphical model in a progressive fashion and
how to maintain target models for persistent tracking.

4.1 Density Propagation by Patch Matching

In the sequential Bayesian filtering framework, the density function is propagated
recursively and the posterior is estimated through prediction and update steps.
In our scenario, density propagation does not necessarily happen between two
temporally adjacent frames but can be performed via any frames tracked previ-
ously. The propagated density at frame t from frame u denoted by Pu(xt|y1:t)
is defined as

Pu(xt|y1:t) = αu→tPu(yt|xt)

∫
P (xt|xu)P (xu|y1:u)dxu, (1)

where P (xt|xu) is the transition model from frame u to frame t, Pu(yt|xt) is
likelihood at frame t with respect to frame u, and αu→t is a normalization
constant.

The recursive posterior estimation is implemented through patch matching
with sampling [1], where the prediction and update steps in each Bayesian filter
are handled jointly. Each patch inside a candidate bounding box defined by a
sample in frame u are matched with a certain patch in frame t, and the patch
votes for the target center using a Gaussian kernel. The voting map for each
sample is obtained by aggregating the votes from all patches in the bounding
box, and the further aggregation of the voting maps constructs the posterior of
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frame t. Mathematically, the posterior is approximated as

Pu(xt|y1:t) ≈
∑

xi
u∈Su

Pu(yt|xt)P (xt|xi
u)

=
∑

xi
u∈Su

riu∑
j=1

N (xt; fu→t(c
j
i )− aj

i ,Σ), (2)

where Su denotes a set of samples drawn from P (xu|y1:u), riu is the number of
patches within the bounding box defined by each sample xi

u. The patch match
function fu→t(c

j
i ) finds correspondence of the patch centered at cji , and aj

i is

the offset from xi
u to cji . Each voting is smoothed using Gaussian kernel N (·)

with a variance Σ. We maintain multiple posteriors in several different scales to
handle the variation in size of the target. Note that each propagation creates a
directed edge between two corresponding frames in the graphical model.

4.2 Density Aggregation by Weighted Bayesian Model Averaging

Our tracking algorithm employs a weighted Bayesian model averaging to prop-
agate the posterior density functions similar to [1]. Since we do not rely on the
first-order Markov chain any more, there are a number of options to propagate
the posterior to the current frame from all the previous frames.

Let Tt−1 = {t(1), . . . , t(m)}, where t is the index of the current frame and
t(1), . . . , t(m) ≤ t− 1, be a set of representative frame indices that have outgoing
edges to the tth frame in the graphical model. In other words, only the frames
corresponding to the elements in Tt−1 among all the tracked frames propagate
densities to the tth frame. Then, the posterior at the current frame P (xt|y1:t) is
estimated by a weighted sum of the propagated densities from u ∈ Tt−1 denoted
by Pu(xt|y1:t) as illustrated in Figure 2, which is formally given by

P (xt|y1:t) ∝
∑

u∈Tt−1

ωu→tPu(xt|y1:t)

=
∑

u∈Tt−1

ωu→tPu(yt|xt)

∫
P (xt|xu)P (xu|y1:u)dxu, (3)

where ωu→t is the weight for each posterior. This formulation is similar to the one
proposed in [1] and the detailed derivation is omitted due to space limitation.
By integrating patch matching process in Eq. (2), the posterior at frame t is
estimated approximately by the following equation:

P (xt|y1:t) =
∑

u∈Tt−1

ωu→t

∑
xi
u∈Su

riu∑
j=1

N (xt; fu→t(c
j
u)− aj

u,Σ). (4)

Propagating density from one frame to another means that there exists a directed
edge between the two frames in the graphical model, where the weight for the
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edge is ωu→t, where u is a parent frame of t. All nodes are supposed to have
|Tt−1| incoming edges, where | · | denotes the number of elements in a set. The
remaining issue is how to determine the weight factor, ωu→t.

The weight factor ωu→t is determined by the suitability of tracking along the
edge from frame u to t, considering the path from the initial frame to frame u
in the graph structure. For the purpose, we define a measure to estimate the
potential risk resulting from tracking between frame u and t, which is given by

δu→t = max (δu, dc(u, t)) , (5)

where dc(u, t) represents the estimated tracking error between two directly con-
nected frames u and t, and δu represents the accumulated tracking error up
to frame u. dc(u, t) measures the dissimilarity between target appearances in
frame u and t, where the target at frame t is tentatively obtained based on the
propagated posterior from frame u as

x∗u→t = arg max
xt

Pu(xt|y1:t). (6)

Given the target templates τu and τt, which are obtained from the bounding
boxes corresponding to x∗u and x∗u→t, respectively, we compute the deformation
cost between τu and τt as follows:

dc(u, t) ≡ median
j

(
||cju − fu→t(c

j
u; τt)||

)
, (7)

where fu→t(c
j
i ; τt) is a patch matching function from the jth patch centered at

cju inside template τu at frame u to template τt at frame t. The accumulated
tracking error δu is obtained by the maximum tracking error in the minimax
path from the initial frame to frame u, which is formally given by

δu = min
v∈Tu−1

δv→u = min
v∈Tu−1

(max (δv, dc(v, u))) , (8)

where v denote the parent frames of u in the graph. Note that δu is computed
when tracking at frame u is completed and hence given at frame t.

Based on tracking error δu→t, defined in Eq. (5), the normalized weight for
each outgoing edge ωu→t,∀u ∈ Tt−1 is given by,

ωu→t =
exp(−η · δu→t)∑

s∈Tt−1
exp(−η · δs→t)

, (9)

where η is a scale factor and set to η = (minu δu→t)
−1. In this way, each prop-

agated density Pu(xt|y1:t) along each directed edge from Tt−1 is aggregated to
obtain the posterior P (xt|y1:t) at frame t.

4.3 Model Update

When the density propagation and aggregation steps are completed, the optimal
target state is given by the MAP solution as

x∗t = arg max
xt

P (xt|y1:t). (10)
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After obtaining the tracking result x∗t in a new frame and augmenting the graph-
ical model including the new frame t, we update the list of representative frames,
Tt−1. Note that maintaining an appropriate set of frames Tt is important to track
subsequent frames and avoid drift problem.

To achieve this goal, we apply an online classifier based on k-nearest neigh-
bors and decide whether the tracking result corresponds to target object or
background. If it turns out to be target, we update the representative frame set
based on the predefined measure. We discuss these two issues next.

Template Classification Suppose that we have collected a set of positive and
negative templates, corresponding to target and background respectively, during
tracking until frame t−1. The set is denoted byDt−1 = {τ+

1 , ..., τ
+
Np
, τ−1 , ..., τ

−
Nn
},

where τ+ and τ− represent positive and negative templates, respectively, and
Np and Nn denote the numbers of positive and negative examples, respectively.
To classify the obtained target template τ ∗t corresponding to x∗t , we use the
following measure

S =
Sp

Sp + Sn
(11)

where Sp is an average distance between τ ∗t and k-nearest positive templates in
Dt−1 and Sn is the distance between τ ∗t and the nearest negative template. The
distance measure used to compute Sp and Sn is the Sum of Squared Distance
(SSD)1. The estimated template τ ∗t is determined as the target object if S < ρ,
where ρ is a classifier threshold and typically set to 0.5. Note that Sn considers
only a single nearest negative template while Sp considers k-nearest positive
templates, which is useful to make the classifier robust to false positives. One
may argue that this strategy may not be appropriate to handle radical target
appearance changes, but there is a trade-off between avoiding drift problem and
adapting new appearances; we found that the conservative method works better
in practice.

Once τ ∗t is classified as a target object, we construct Dt from Dt−1 by re-
placing old templates in Dt−1 with new positive and negative templates. The
positive template is obtained from our MAP solution x∗t , and the negative tem-
plates are generated considering background context and distracting regions.
The background context is captured by sampling background templates around
the identified target x∗t . The distractors are regions that have similar appearance
as target, therefore sampled from modes in P (xt|y1:t) except x∗t . Note that the
number of elements in D remains same in each frame.

Maintaining Representative Frames Maintaining a small subset of frames
propagating densities, Tt, is crucial to achieve good tracking performance with
efficiency. We consider the following two properties to maintain a reasonable set
of representative frames Tt:
1 We used SSD instead of patch matching here because SSD is more efficient and patch

matching is not particularly better than SSD for this purpose.
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• Distinctiveness: Frames in Tt should be unique in the set to effectively
cover various aspects of target in the entire graph.
• Usefulness: Frames in Tt should potentially contribute to tracking subse-

quent frames.

We now discuss how we update Tt online by taking the both properties into
account. Let κu,t denote the weight of frame u ∈ Tt in terms of representativeness

for further tracking. The weight depends on two factors, κ
(1)
u and κ

(2)
u,t, which

correspond to distinctiveness and usefulness, respectively.
To make the elements in Tt distinctive, frames with redundant target appear-

ances need to be removed from the set. The weight for frame distinctiveness is
computed by

κ(1)u = min
v∈Tt−1\{u}

∆(u, v), (12)

which corresponds to the distance between the template in frame u and the
most similar target template within other frames in Tt−1. Specifically, ∆(u, v) is
determined by the two factors as

∆(u, v) = dc(u, v) · dp(u, v), (13)

where dc measures the degree of the target deformation, as defined in Eq. (7),
and dp measures the dissimilarity of target appearances based on average `2
distances between all matched patches within the target templates.

On the other hand, we claim that the frames having recently propagated
densities with large weights are more useful to track subsequent frames, and
such potential of frames are measured by

κ
(2)
u,t = (1 + σytωu→t)κ

(2)
u,t−1, (14)

where ωu→t is weight for density propagation from frame u ∈ Tt−1 to frame t as
defined in Eq. (9), yt ∈ {+1,−1} indicates whether tracking result at frame t is
classified as foreground (+1) or background (−1) in the template classification
step, and σ controls update rate set to 0.1.

By combining the weights for the two different aspects, the weight for each
frame u ∈ Tt is given by

κu,t = κ(1)u · κ
(2)
u,t. (15)

The weight for the new frame t is computed by the same manner, except that

κ
(2)
t,t−1 is computed by the median of κ

(2)
u,t−1,∀u ∈ Tt−1. Given these weights for

frames in Tt−1 and t, we update the Tt as follows:

Tt =

{
(Tt−1 \ {m}) ∪ {t}, if κt,t > κm,t

Tt−1, otherwise
(16)

where
m = argmin

u∈Tt−1

κu,t.

After Tt is obtained by Eq. (16), the weights κi,t,∀i ∈ Tt are re-normalized such
that all weights are summed up to one.
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5 Experiment

Our tracking algorithm is tested in a variety of challenging sequences and com-
pared with many state-of-the-art online tracking algorithms included in the
tracking benchmark [25]. We present implementation details of the proposed
algorithm and extensive experimental results.

5.1 Datasets and Compared Algorithms

To evaluate the performance of our tracking algorithm in various scenarios,
we conducted experiments on all the 50 sequences in the tracking benchmark
dataset [25] and added 10 more sequences publicly available, which are more
challenging and difficult to be handled by online trackers. The sequences from
the benchmark dataset contain various challenges such as illumination varia-
tion, background clutter, occlusion, etc. More challenges are included in the 10
additional sequences: heavy occlusion (TUD, campus, accident), abrupt target
motion (bike, tennis) and shot changes (boxing, youngki, skating, dance, psy).

We compared our algorithm with top 10 trackers by one-pass evaluation
(OPE) in the tracking benchmark [25], which include SCM [5], Struck [14],
TLD [12], ASLA [26], CXT [27], VTD [28], VTS [29], CSK [30], LSK [7] and
DFT [31]. In addition, the state-of-the-art offline tracking algorithm OMA [1]
is also included in our evaluation. We used default parameters for all compared
methods. Our method is denoted by OGT (Online Graph-based Tracking).

5.2 Implementation and Performance

Our algorithm employs patch matching technique across multiple scales for den-
sity propagation. Specifically, 4× 4 patches are used for patch matching and 13
different scales (1.1−6, 1.1−5, . . . , 1.10, . . . , 1.15, 1.16) are considered for tracking.
The number of representative frames in T set to 12 except the initial part of each
sequence2. The number of templates in D for k-nearest neighbor classification is
600 with 300 positive and negative examples, and k is set to 10. All parameters
are fixed throughout the experiment. Our algorithm runs at 1 frame/sec in av-
erage based on an unoptimized Matlab implementation except patch matching
function [2], which is written in C/C++.

To evaluate performance of our algorithm, we followed the same protocols
in [25], where precision and success rate are measured by using densely sampled
thresholds on center location error and bounding box overlap ratio, respectively.
Figure 3 illustrates quantitative evaluation for all the sequences in the tracking
benchmark. Performance of our tracker in benchmark dataset is competitive with
the state-of-the-art online trackers, which indicates that our tracker is suitable
to handle general challenges for tracking.

2 At the beginning of sequences, the new frame is added to T without removing
elements as long as the estimated target is classified as foreground and |T | < 12.
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(a) Precision (b) Success rate

Fig. 3. Tracking performance in all the 50 sequences in the tracking benchmark dataset.
Precision and success ratio are measured by center location errors and bounding box
overlap ratios, respectively. The ranks are set with center location error 25 and overlap
ratio 0.5.

Fig. 4. Tracking performance in the additional 10 sequences with more challenging
events. Precision and success ratio are measured by center location errors and bounding
box overlap ratios, respectively. The ranks are set with center location error 25 and
overlap ratio 0.5.

In the additional sequences involving more challenges, on the other hand, our
tracker outperforms all other trackers with large margin and even comparable
the state-of-the-art offline tracker, OMA [1]. It is because existing techniques
typically rely on the first-order Markov assumption for tracking a new frame
while our algorithm relaxes the restriction and isolates temporal tracking fail-
ures within local branches in the graph structure. The results for this experiment
are illustrated in Figure 4. Table 1 and 2 summarize the average scores of center
location error and overlap ratio for the additional 10 sequences, respectively. The
identified graph reflects the structure of an input sequence pretty well, which is
illustrated in Figure 5. As shown in the figure, our algorithm maintains a rea-
sonable representative frames T in each frame and propagates density function
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Fig. 5. The example of identified graph structure in skating sequence. The whole graph
is very complex, and we illustrate only the frames that have been included in T and
the associated edges with high weights. Frames included in the final T are highlighted
with red bounding boxes.

successfully to the new frame. The results for qualitative evaluation are presented
in Figure 6.

6 Conclusion

We presented a novel online tracking algorithm, which progressively construct
a graphical model beyond chain model, which is more appropriate for tracking.
The target posterior of a new frame is estimated by propagating densities from
previously tracked frames and making a weighted average of the densities based
on the relevance of the existing frames with respect to the new frame. For com-
putational efficiency, only a small number of frames is maintained for density
propagation in an online manner, so that they capture important characteristics
of input video and are potentially useful for tracking subsequent frames. Out-
standing experimental results on 50 sequences in the tracking benchmark and 10
more challenging sequences show the benefit of our progressive graph construc-
tion algorithm for tracking.

Acknowledgments: This work was supported partly by MEST Basic Science
Research Program through the NRF of Korea (NRF-2012R1A1A1043658), ICT
R&D program of MSIP/IITP [14-824-09-006, Novel computer vision and ma-
chine learning technology with the ability to predict and forecast], and Samsung
Electronics Co., Ltd.
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TLD SCM CXT STRUCK ASLA OGT 

Fig. 6. Qualitative performance evaluation for 10 additional sequences. From top to
bottom, tracking results for tennis, skating, accident, bike, boxing, campus, TUD,
youngki, psy and dance sequences are presented.
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Table 1. Average center location error (in pixels). Red: best, blue: second best.

LSK ASLA CXT DFT CSK Struck SCM VTD VTS TLD OMA OGT

tennis 79.3 67.2 129.8 87.1 112.3 109.5 66.0 81.0 58.9 64.5 6.4 4.9
skating 85.9 45.2 41.5 83.3 61.1 23.8 49.0 37.1 42.9 35.3 7.9 6.4
accident 68.4 59.4 9.0 13.6 76.0 56.4 2.8 70.8 70.4 5.4 3.1 6.0

bike 70.4 88.6 22.2 131.1 103.3 8.4 13.6 85.7 82.1 16.9 17.4 7.2
boxing 97.1 137.3 137.3 73.2 108.8 122.7 95.9 82.9 80.4 73.3 10.3 11.1
campus 44.6 12.2 33.4 1.3 2.1 83.1 12.6 45.1 44.8 46.7 2.6 2.5
TUD 21.1 72.6 36.4 8.2 55.4 54.4 12.2 46.5 48.2 18.9 4.2 11.8

youngki 108.9 144.1 67.9 72.6 163.9 115.1 114.5 112.5 116.0 60.2 11.0 11.5
psy 153.9 188.8 143.7 205.3 1022.9 76.3 211.6 129.5 123.6 55.6 14.7 26.2

dance 163.9 117.5 176.8 157.1 147.0 107.1 208.5 188.4 201.1 105.0 14.9 23.7

Average 89.4 93.3 79.8 83.3 185.3 75.7 78.7 88.0 86.8 48.2 9.3 11.1

Table 2. Average bounding box overlap ratio. Red: best, blue: second best.

LSK ASLA CXT DFT CSK Struck SCM VTD VTS TLD OMA OGT

tennis 0.20 0.12 0.08 0.06 0.04 0.28 0.11 0.07 0.09 0.10 0.65 0.77
skating 0.04 0.13 0.25 0.11 0.09 0.40 0.20 0.25 0.21 0.33 0.45 0.54
accident 0.35 0.43 0.80 0.47 0.32 0.32 0.86 0.41 0.41 0.75 0.75 0.66

bike 0.20 0.16 0.39 0.02 0.15 0.54 0.49 0.16 0.17 0.45 0.43 0.57
boxing 0.07 0.03 0.01 0.17 0.05 0.04 0.13 0.14 0.16 0.21 0.70 0.66
campus 0.58 0.63 0.56 0.81 0.81 0.24 0.62 0.35 0.36 0.50 0.81 0.83
TUD 0.62 0.30 0.51 0.60 0.38 0.30 0.68 0.41 0.38 0.67 0.83 0.65

youngki 0.12 0.12 0.38 0.14 0.10 0.09 0.13 0.16 0.14 0.24 0.63 0.64
psy 0.11 0.11 0.10 0.07 0.09 0.34 0.07 0.20 0.25 0.38 0.64 0.56

dance 0.12 0.10 0.08 0.11 0.12 0.08 0.07 0.09 0.09 0.07 0.53 0.57

Average 0.24 0.21 0.32 0.26 0.22 0.26 0.34 0.22 0.23 0.37 0.64 0.65

References

1. Hong, S., Kwak, S., Han, B.: Orderless tracking through model-averaged posterior
estimation. In: ICCV. (2013)

2. Korman, S., Avidan, S.: Coherency sensitive hashing. In: ICCV. (2011)
3. Bao, C., Wu, Y., Ling, H., Ji, H.: Real time robust l1 tracker using accelerated

proximal gradient approach. In: CVPR. (2012)
4. Mei, X., Ling, H.: Robust visual tracking using l1 minimization. In: ICCV. (2009)
5. Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collab-

orative model. In: CVPR. (2012)
6. Han, B., Comaniciu, D., Zhu, Y., Davis, L.: Sequential kernel density approxima-

tion and its application to real-time visual tracking. TPAMI 30 (2008)
7. Liu, B., Huang, J., Yang, L., Kulikowski, C.A.: Robust tracking using local sparse

appearance model and k-selection. In: CVPR. (2011) 1313–1320
8. Sevilla-Lara, L., Learned-Miller, E.G.: Distribution fields for tracking. In: CVPR.

(2012) 1910–1917
9. Ross, D.A., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual

tracking. IJCV 77 (2008)



Online Graph-Based Tracking 15

10. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task
sparse learning. In: CVPR. (2012)

11. Kwon, J., Lee, K.M.: Tracking of abrupt motion using wang-landau monte carlo
estimation. In: ECCV. (2008)

12. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-Learning-Detection. TPAMI (2012)
13. Babenko, B., Yang, M.H., Belongie, S.: Robust object tracking with online multiple

instance learning. TPAMI 33 (2011)
14. Hare, S., Saffari, A., Torr, P.H.S.: Struck: Structured output tracking with kernels.

In: ICCV. (2011)
15. Pan, P., Schonfeld, D.: Visual tracking using high-order particle filtering. Signal

Processing Letters 18 (2011) 51–54
16. Kwak, S., Nam, W., Han, B., Han, J.H.: Learning occlusion with likelihoods for

visual tracking. In: ICCV. (2011)
17. Buchanan, A.M., Fitzgibbon, A.W.: Interactive feature tracking using K-D trees

and dynamic programming. In: CVPR. (2006)
18. Gu, S., Zheng, Y., Tomasi, C.: Linear time offline tracking and lower envelope

algorithms. In: ICCV. (2011)
19. Uchida, S., Fujimura, I., Kawano, H., Feng, Y.: Analytical dynamic programming

tracker. In: ACCV. (2011)
20. Wei, Y., Sun, J., Tang, X., Shum, H.Y.: Interactive offline tracking for color objects.

In: ICCV. (2007)
21. Sun, J., Zhang, W., Tang, X., yeung Shum, H.: Bi-directional tracking using tra-

jectory segment analysis. In: ICCV. (2005)
22. Matthews, I., Ishikawa, T., Baker, S.: The template update problem. IEEE Trans.

Pattern Anal. Mach. Intell. 26 (2004) 810–815
23. Jepson, A.D., Fleet, D.J., El-Maraghi, T.F.: Robust online appearance models for

visual tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003) 1296–1311
24. Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T.: Bayesian model aver-

aging: A tutorial. Statistical Science 14 (1999)
25. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: CVPR.

(2013)
26. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse

appearance model. In: CVPR. (2012)
27. Dinh, T.B., Vo, N., Medioni, G.: Context tracker: Exploring supporters and dis-

tracters in unconstrained environments. In: CVPR. (2011)
28. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR. (2010)
29. Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: ICCV. (2011)
30. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant

structure of tracking-by-detection with kernels. In: ECCV. (2012)
31. Sevilla-Lara, L., Learned-Miller, E.: Distribution fields for tracking. In: CVPR.

(2012)


