
 Propagate a posterior by patch matching and voting 
procedure [1].

 Prediction and update steps are jointly implemented by 
patch matching and center voting.

 Weighted Bayesian Model Averaging.

 The weight is determined by potential tracking error.

 Motivation: Visual tracking relying on a chain model is not 
reliable in challenging situations.

 Objective: Online tracking which adaptively constructs a 
graph structure based on the target characteristic.

 Our approach: Track the current frame using multiple 
previous frames selected by representability and weighted 
by tracking suitability.
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1 Density Propagation
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𝜹𝟏 = 𝟎

𝜹𝟐 = 𝟑

𝜹𝟑 = 𝟒

𝜹𝟒 = 𝟕

𝜹𝟑→𝒕 = 𝟒

𝜹𝟐→𝒕 = 𝟖

𝜹𝟒→𝒕 = 𝟕

𝒅𝒄 𝟐, 𝒕 = 𝟖

𝒅𝒄 𝟑, 𝒕 = 𝟑

𝒅𝒄 𝟒, 𝒕 = 𝟏

𝛿𝑢→𝑡 : The potential error of tracking 𝑢 → 𝑡

𝑑𝑐(𝑢, 𝑡) : The deformation cost by patch matching

𝛿𝑢 : The minimax distance from the initial frame to 𝑢

𝛿𝑢→𝑡 = max(𝑑𝑐 𝑢, 𝑡 , 𝛿𝑢)
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A set of representative frames
when tracking 𝑡
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𝕊𝑢: A set of samples drawn from 𝑃𝑢(x𝑢|y1:𝑢)
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Maintaining 
representative frames

 Prevent false tracking results from entering 
the representative frame set.

 A set of positive and negative templates

 New target template 𝜏𝑡
∗ is positive if

Classification

𝑆𝑝

𝑆𝑝 + 𝑆𝑛
< 𝜌

𝑆𝑝: The average Euclidean distance between 𝜏𝑡
∗ and 𝑘-

nearest positive templates in 𝐷𝑡−1

𝑆𝑛: The Euclidean distance between 𝜏𝑡
∗ and the nearest 

negative template in 𝐷𝑡−1

𝒟𝑡−1 = {𝜏1
+, … , 𝜏𝑁𝑝

+ , 𝜏1
−, … , 𝜏𝑁𝑛

− }

 Each template in the representative frame set should be distinct and useful for 
the further tracking.

Maintaining representative frames

Distinctiveness Usefulness
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= 1 + 𝜎𝑦𝑡𝜔𝑢→𝑡 𝜅𝑢,𝑡−1
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𝜅𝑢,𝑡

𝒯𝑡 =  
(𝒯𝑡−1\{𝑚}) ∪ {𝑡}

𝒯𝑡−1

if 𝜅𝑡,𝑡 > 𝜅𝑚,𝑡

otherwise

patch matching distance classification result (+1 or -1)

𝜅𝑢,𝑡 = 𝜅𝑢
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∙ 𝜅𝑢,𝑡
(2)

 Propagate density functions 
from representative frames  
through a patch matching. 

 Estimate the target posterior 
by a weighted Bayesian model 
averaging , where the weights 
are computed by tracking 
plausibility.

 Evaluate the reliability of the 
tracking result and update the 
representative frame set if 
necessary. High weightLow weight

Representative 
frames

50 benchmark sequences [2]

10 challenging sequences

[2] Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: CVPR. (2013)

Our tracker: OGT (Online Graph-based Tracker)


