
Orderless Tracking through Model-Averaged Posterior Estimation

Seunghoon Hong Suha Kwak **Bohyung Han**

Occlusion (top : *TUD*, bottom : *campus* sequence)

Shot change (top : *boxing*, middle : *skating*, bottom : *psy* sequence)

Department of Computer Science and Engineering, POSTECH, Korea

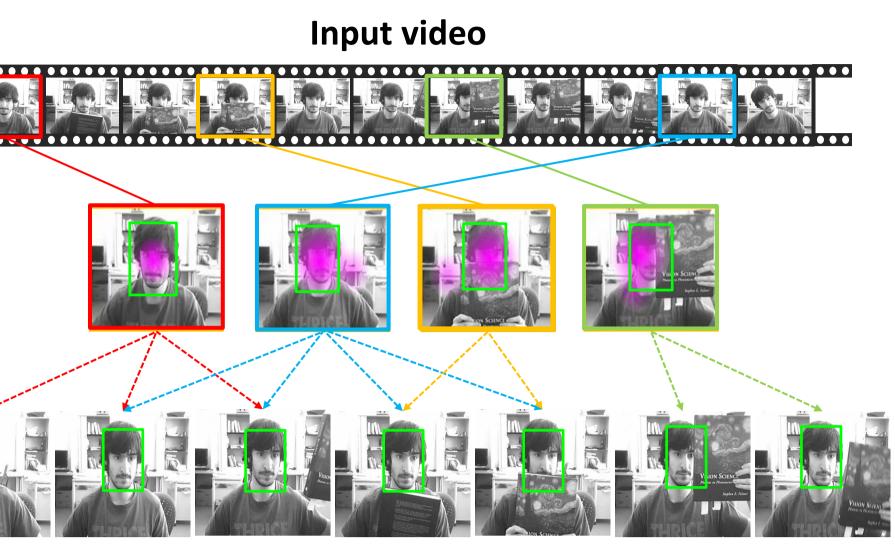
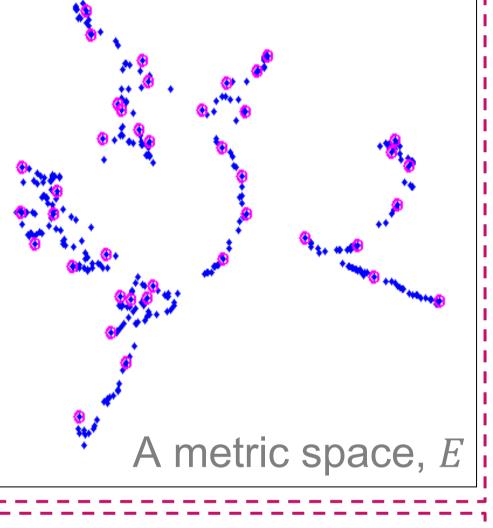
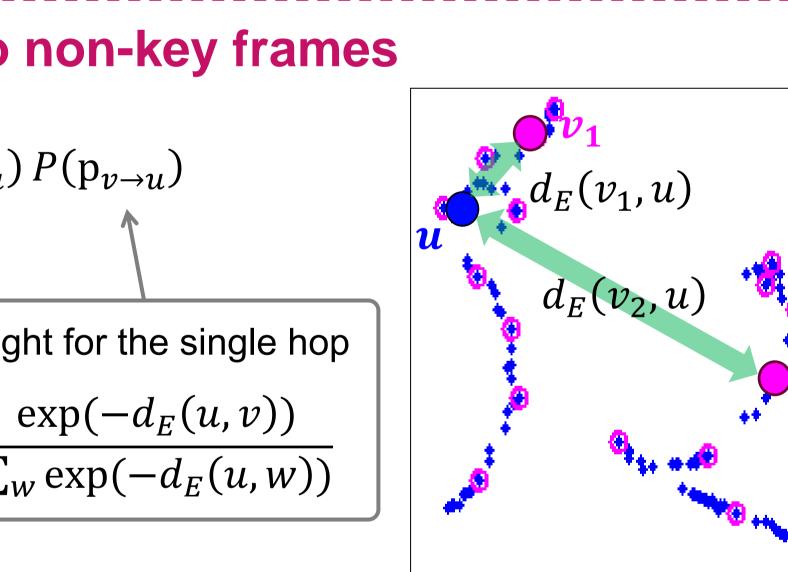

tion an Model Averaging	 Efficient Hierarchical Track key frames first, and 						
for tracking $x_3 \rightarrow x_{t_k}$: Tracked frames	Key frame selection						
$(x_1) \rightarrow (x_{t_k})$: Remaining frames	Tracking key frames by the proposed tracker						
$\tilde{d}(x_t)dx_t$	Propagating posteriors to non-key frames						
$D(Z_{t_k} x_{t_k})p(x_{t_k} x_t^i)$ $\sum_j \mathcal{N}(x_{t_k} f_{PM}(c_t^j) - a_t^j, \Sigma)$	 Key frame selection Computing distance between a D(l₁, l₂) = ¹/_{n₁} $\sum_{P \in I_1} \min_{Q \in I_2} d(P, Q) + \frac{1}{n_2}$ Embedding frames into a metric selecting k most representative k-center problem in metric spatial \mathcal{K}^* = arg min max min $d_E(u, v)$ Density propagation to 						
Updating the lists of tracked and remaining frames $\mathcal{T}_{k} = \mathcal{T}_{k-1} \cup \{t_k\}$ $\mathcal{R}_{k} = \mathcal{R}_{k-1} \setminus \{t_k\}$	$\tilde{P}(x_u) = \sum_{v \in \mathcal{K}} P(x_u Z_{\mathcal{K}}, p_{v \to u})$ Density propagation through the single hop $p_{v \to u}$ by patch matching and voting $Weightrian Constraints = 0$						

Table 1. Average center location error (in pixels). Red: best, blue: second best.												
	IVT	MIL	SCM	L1APG	MTT	ASLSA	L1	FRAG	WLMC	OTLE	OMA	SMA
animal	10.6	32.0	16.6	48.8	12.6	179.6	164.9	94.1	64.8	19.4	7.7	7.4
TUD	12.6	57.1	12.2	7.4	37.2	67.2	64.7	17.3	68.2	27.4	4.4	5.9
campus	38.7	37.1	12.2	16.1	6.0	12.2	68.4	3.3	13.5	5.8	3.2	7.0
accident	27.6	24.8	3.0	20.3	21.9	2.9	32.4	7.4	12.2	9.1	2.6	6.5
tennis	68.7	74.4	65.9	85.0	65.6	68.8	111.4	67.4	31.0	37.0	6.9	11.9
boxing	128.1	88.9	96.0	117.6	87.0	106.8	103.5	80.0	11.7	41.7	10.5	22.6
youngki	95.2	115.2	115	137.9	176.5	151.8	121.8	97.5	16.0	15.7	11.4	14.0
skating	77.8	15.0	49.4	143.9	100.4	22.8	72	35.4	14.7	18.3	8.0	10.8
psy	156.5	220.6	213.3	71.8	117.8	146.8	124.6	95.2	66.0	61.2	15.0	21.9
dance	283.9	169.4	208.0	113.9	133.4	118.1	143.1	132.4	39.7	118.8	15.1	19.7

			Tab	le 2. Ave
	IVT	MIL	SCM	L1APC
animal	0.60	0.42	0.55	0.4
TUD	0.65	0.34	0.67	0.85
campus	0.56	0.45	0.62	0.52
accident	0.58	0.53	0.87	0.69
tennis	0.06	0.20	0.11	0.29
boxing	0.05	0.06	0.13	0.13
youngki	0.09	0.13	0.13	0.02
skating	0.01	0.41	0.20	0.02
psy	0.07	0.08	0.07	0.02
dance	0.03	0.07	0.07	0.10


Approach


propagate posteriors to non-key frames.

all pairs of frames $\sum_{Q \in I_2} \min_{P \in I_1} d(P,Q)$ ric space by ISOMAP

ve frames by solving ace E

erage overlap ratio. Red: best, blue: second best OMA SMA 0.480.62 0.590.82 0.32 0.38 0.480.75 0.72 0.52 0.670.85 0.760.430.630.56 0.22 0.380.510.06 0.54 0.620.54 0.29 0.25 0.42 0.37 0.410.25 0.23 0.390.400.63 0.57 0.30 0.45 0.100.110.14 0.52 0.50 0.11