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Abstract

We present a novel approach to representing and recog-

nizing composite video events. A composite event is spec-

ified by a scenario, which is based on primitive events

and their temporal-logical relations, to constrain the ar-

rangements of the primitive events in the composite event.

We propose a new scenario description method to repre-

sent composite events fluently and efficiently. A compos-

ite event is recognized by a constrained optimization algo-

rithm whose constraints are defined by the scenario. The

dynamic configuration of the scenario constraints is rep-

resented with constraint flow, which is generated from sce-

nario automatically by our scenario parsing algorithm. The

constraint flow reduces the search space dramatically, alle-

viates the effect of preprocessing errors, and guarantees the

globally optimal solution for recognition. We validate our

method to describe scenario and construct constraint flow

for real videos and illustrate the effectiveness of our com-

posite event recognition algorithm for natural video events.

1. Introduction

Automatic video event recognition is one of the most

important goals of many video-based intelligent systems

including visual surveillance and content-based video re-

trieval. The recognition of composite video events, which

are represented by temporal-logical arrangements of several

activity patterns, is useful for extracting high-level semantic

information from videos. A composite event typically has

its own semantic structure called scenario; it also works as

a set of constraints used to recognize events in an ambigu-

ous situation. For these reasons, many scenario-based ap-

proaches have been proposed to recognize composite events

[4, 7, 8, 9, 11, 13].

An important issue of the scenario-based approach is

the flexibility of scenarios because it bounds the range of

composite events recognized. We propose a novel sce-

nario description method, in which various arrangements

of activity patterns can be described fluently by temporal-
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Figure 1. An outline of the overall recognition system. Our system

works with the constraint flow pre-compiled in the off-line step

and primitives, atomic and meaningful activity patterns, estimated

in the on-line step.

logical relations; we can describe from simple to complex

structures of composite events hierarchically. In general,

however, it is difficult to simultaneously satisfy flexibility

of scenarios and plausibility of recognition due to seman-

tic gaps1. Also, most scenario-based methods suffer from

huge a search space because they employ combinatorial op-

timization whose domain is the combinations of sequential

activity patterns. To overcome the limitations of existing

techniques, we introduce constraint flow, which bounds the

search space to a constant size and bridges the semantic gap.

The constraint flow also reduces the effect of preprocessing

errors, and guarantees the optimal solution at each time step

without any assumptions or heuristics to prune the search

space.

The overall system proposed in this paper consists of on-

line and off-line processes (Fig. 1). In the off-line process,

the parser analyzes the scenario of the target event and gen-

erates the corresponding constraint flow automatically. In

the on-line event recognition step, the preprocessing units

extract information of objects from the input video; this in-

formation is then used to estimate the occurrences of the

atomic activity patterns, called primitives, which form the

target composite event. The composite event recognition is

performed based on the estimated primitives from on-line

observation as well as the generated constraint flow.

1Here, the semantic gap characterizes the difference between scenar-

ios described by human and the associated machine understanding. More

flexible scenario causes broader semantic gap in general.
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The rest of this paper is organized as follows. Section

2 reviews previous work related to event recognition, and

Section 3 introduces our scenario description method. In

Section 4, we define the constraint flow and present how

it is generated automatically. Composite event recognition

using the constraint flow is described in Section 5, and ex-

perimental results are presented in Section 6.

2. Related work

There has been a lot of research done on automatically

recognizing what happens in videos. A large number of

methods for abnormality detection have been proposed re-

cently [3, 5]. They are useful in real world applications be-

cause they are flexible and easy to implement even when

annotated data is not sufficient. However, semantic inter-

pretations of videos are not straightforward in the above ap-

proaches. So, we focus on knowledge-based semantic rea-

soning for composite events [6].

Stochastic context-free grammar (SCFG) has been

widely used to recognize composite events in videos. The

SCFGs effectively model and recognize composite events

with uncertainties, but cannot handle simultaneous oc-

currences of primitives because CFGs generate only 1-

dimensional languages [4, 8]. Dynamic Bayesian networks

(DBNs) address more flexible scenarios than SCFGs, where

structures of DBNs determine the corresponding scenarios.

The Hidden Markov model (HMM) still have the same lim-

itation as SCFGs, but [2] attempted to overcome such limi-

tation by introducing several variations of the basic HMM.

Other DBNs have been studied for the same purpose; prop-

agation network [10, 11] and activity DBN [7] were pro-

posed to recognize more complicated composite events with

sampling-based inference algorithms. However, DBNs are

still insufficient to describe various events because their sce-

narios are bounded by their conditional dependency struc-

tures. Also, the inference algorithms for DBNs involve

heuristics such as beam search [10, 11] or greedy pruning of

candidates [7] to explore the huge search space. Temporal-

logical predicates [1] have been used to enhance the flexibil-

ity of scenarios [9, 13], but the huge search space problem

still remains; their reasoning algorithms exhaustively search

the primitive recognition results in a temporally backward

direction [13] or assume that a primitive appears only once

in an execution of the target event—an extreme case of the

time window search [9].

From the above observations, we mainly focus on 1) the

flexibility of event scenarios and 2) the exact inference with-

out assumptions or heuristics. So, we design a novel sce-

nario description method based on temporal-logical predi-

cates. Also, the constraint flow is proposed to make prob-

abilistic inference subject to given scenario constraints in

a dynamic programming framework to obtain the globally

optimal solution without approximation.

3. Video event description

A video event can be represented with a sequence of pat-

terns, which are extracted from objects in videos. We regard

an event as a meaningful sequence of patterns whose char-

acteristics are defined in advance.

This section describes a novel event description method

to define the structures of the sequential patterns. We iden-

tify primitives and define several temporal-logical relations

among the primitives or their groups. Also, we present a

systematic description method based on the relations.

3.1. Event categorization

We divide events into two categories: primitives and

composite events. Primitives are morphemes to construct

composite events and they cannot be divided into smaller

events. Also, their occurrences can be estimated at each

time step by analyzing the motion and spatial information

of objects. Therefore, the occurrences of primitives are dis-

crete and instantaneous; we define a time interval of a prim-

itive as a group of discrete but consecutive occurrences of

the primitive. A composite event is organized by the time

intervals of primitives, which are arranged by the temporal-

logical relations among them. A specification of a compos-

ite event, i.e., a set of primitives and corresponding relations

among them, is called scenario. A composite event is de-

fined by a unique scenario; a composite event may involve

multiple scenarios in hierarchical manners because a com-

posite event can be a part of other composite events.

3.2. Scenario description for composite events

A scenario describes how the corresponding composite

event should happen. It consists of primitives forming the

target event and their relations describing how they partic-

ipate in the configuration of the target event. Let E be a

composite event and e be a set of one or multiple primitives

of E. The scenario S of E is defined as follows:

S(E) =
{
rk
(
ei, ej

)∣∣∣ei ⊂ E, ej ⊂ E, rk ∈ R
}
. (1)

A relational predicate r, which is included in the set of re-

lationsR, is a constraint for the arrangements of time inter-

vals of the corresponding primitives. We define four tempo-

ral relations and two logical relations forR.

The temporal relations constrain the order of the time

intervals. Let start(e) and end(e) be the start time and the

end time of the occurrence of e, respectively. The temporal

relations are denoted and defined as follows.

ei < ej ⇔ end(ei) is earlier than start(ej)

ei ∧ ej ⇔ start(ei) is earlier than start(ej) and

end(ej) is earlier than end(ei)

ei ∼ ej ⇔ start(ei) is earlier than start(ej)
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Comp. event Scenario

TakeItem[A] Move[A, desk] < Move[A, out] ∧ With[A, item]

BringItem[A] (With[A,item]∼Move[A,desk])<Move[A,out]

TakeMoney[A] Without[A,money]<With[A,money]∧Move[A,out]

BringMoney[A] (With[A,money]∧Move[A,desk])<Without[A,money]

ScanItem[A] With[A,item]∧(Move[A,scanner]<Move[A,desk])

Payment† (BringMoney[ctm]∼TakeMoney[csh])< . . .

#|(BringMoney[csh]∼TakeMoney[ctm])

Transaction† (BringItem[ctm]+ ∼ScanItem[csh]+)< . . .

Payment<TakeItem[ctm]+

Table 1. Scenarios of composite events that happen during a trans-

action between a customer (ctm) and a cashier (csh). For example,

TakeItem[A] means ‘an actor A moves to the desk, and then moves

away with an item’. The two events with † mark are described in

a hierarchical manner.

ei
+ ⇔ end(emi ) is earlier than start(em+1

i )

∀m = 1, 2, 3, . . .

The last unary relation is applied to the pairs of identical

primitive sets to describe an unknown number of recur-

rences of a specified primitive set; the superscript m rep-

resents the sequential index of the occurrences.

Two logical relations are denoted and defined as follows.

ei&ej ⇔ both of ei and ej occur; they are

independent temporally and logically.

ei | ej ⇔ only one of ei and ej occurs.

We also add the concept of a dummy denoted by ‘#’. It is

used to represent “no occurrence” and is paired with the ‘|’
relation.

The relations in parentheses take precedence over rela-

tions outside of parentheses, and this rule is identically ap-

plied to nested parentheses. Except for parentheses, logical

relations take precedence over temporal relations and there

is no precedence among temporal relations.

We manually designed the scenario for the composite

event Transaction by our description method (Table 1). In

this example, three types of primitives are defined: Move[A,

B], With[A, B], and Without[A, B] which mean “A moves to

B”, “A is very close to B”, and “A is far from B”, respec-

tively.

4. Constraint flow

Scenario-based event recognition can be considered as

a constrained optimization problem; the domain of the ob-

jective function is a set of all possible interpretations of the

video observation, and the scenario is a set of constraints

of the optimization problem. After the objective function is

defined, the problem is solved by finding the optimal inter-

pretation from the feasible set, which is the set of interpre-

tations that satisfies the scenario.

An interpretation is a combination of occurrence histo-

ries of the scenario primitives; an interpretation at the tth

time step is a binary matrix Xt whose row refers to each

primitive and whose column represents the time axis up to

t. For example, Xt[i, j] shows whether the primitive ei oc-

curred at the jth time step or not (j ≤ t). This definition

is straightforward to represent all possible situations. For

recognition, it is not sensitive to missing primitives or false

alarms because an interpretation considers all primitives at

once. In addition, it is useful to recognize the repetition of a

composite event because an interpretation can contain many

occurrences of a target event.

When using this approach, we cannot manage all inter-

pretations because their space increases exponentially over

time. Also, it is difficult to check the feasibility of inter-

pretations when the scenario is complex and involves many

primitives. For these reasons, we propose the constraint

flow. The constraint flow generates feasible interpretations

sequentially, as it simultaneously picks only the interpreta-

tions that are necessary to track the globally optimal solu-

tion.

4.1. Definition of constraint flow

A column of an interpretation matrix, Xt[:, j] is a combi-

nation of binary conditions of the primitives at a time step j.

An interpretation of the observations until the tth time step

is a trajectory of the combinations, and a scenario becomes

a set of discrete gating functions, which determine next pos-

sible combinations for the given combinations. Then a set

of gating functions can be represented with an unweighted

directed graph whose vertices are the combinations of the

primitives and whose links restrict transitions among them.

Note that, the constraint flow involves a scenario and is de-

fined by the unweighted directed graph, where the vertices

are combinations of quinary conditions of the primitives

(Fig. 2(a)). If a primitive is currently occurring, its con-

dition is ‘active’. Otherwise, it is ‘inactive’. Because these

binary conditions are not sufficient to represent temporal-

logical structures of scenarios, we subdivide ‘inactive’ into

four conditions as in Table 2.

The constraint flow is a dynamic configuration of the

given scenario; its property is equivalent to the scenario

constraints. It means that all trajectories by tracing the flow

always satisfy the scenario. Given the constraint flow of the

scenario, therefore, we can generate feasible interpretations

by projecting the flow tracing results to the space of the bi-

nary conditions (Fig. 2(b)).

4.2. Construction of constraint flow

We introduce a scenario parsing algorithm to automati-

cally build the constraint flow given a scenario. The parsing

algorithm works similar to the Breadth-First Search (BFS)

algorithm, but the graph structure is unknown in our case.
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Condition Meaning (The primitive . . .) Possible shifts

active(a) occurs currently. active, finished

ready(r) does not occur yet. (inactive) ready, active

finished(f ) ends its activation. (inactive) finished

waiting(w) waits next activation. (inactive) waiting, active

excluded(e) does not participate. (inactive) excluded

Table 2. The quinary conditions to specify flow vertices.
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(a) The constraint flow structure
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(b) Generating a feasible interpretation by tracing the flow

Figure 2. The constraint flow and its utilization for the scenario

“(A∧B|C)<D”. (a) There are two initial vertices (the bold boxes)

and two idle vertices (the dashed boxes). (b) A flow trace (V15) be-

comes a feasible interpretation (X15) by quinary to binary projec-

tion; the time intervals, which consist of consecutive activations,

are painted black, and the idle intervals, generated by the idle ver-

tices, are painted gray.

Therefore, the parser generates vertices while traversing

the graph. Also, the preprocesses for vertex generation—

primitive grouping and ancestor search—are performed be-

fore the flow construction. The entire parsing procedure is

described in Algorithm 1, and we discuss several important

steps below.

Grouping Primitives by ‘+’ (Line 2). A unary temporal-

relation ‘+’ is applied to a primitive or a set of primitives

enclosed by parentheses. The parser checks the existing

‘+’ relations in the scenario, and the set of primitives

affected by each ‘+’ relation forms a group. Consequently,

the grouping result U is a set of primitive groups associated

with each ‘+’ relation.

Search for Start and End Time Ancestors (Line 3). The

set of start time ancestors of a primitive e, denoted by

Algorithm 1 Constraint flow generation by scenario parsing

Require: a scenario S with n primitives

1: Empty the following data structures.

V: set of vertices, L: set of links,

Q: queue structure, {vlast}: set of the last vertices

2: U ← GroupPrimitivesBy+(S)

3: {Astart(ei),Aend(ei)}
n
i=1 ← SearchForAncestors(S)

4: {vinit} ← GenerateInitialVertices(S)

5: Enqueue({vinit}, Q).

6: while Q is not empty do

7: vk ←Dequeue(Q).

8: {vsuc(k)} ← GenerateSuccessiveVertices

(vk, {Astart(ei),Aend(ei)}
n
i=1, U )

9: for each vsuc(k) do

10: if vsuc(k) consists of ‘finished’ and ‘excluded’ only

then

11: Add vk to {vlast} and go to Line 9.

12: end if

13: Add a link 〈vk → vsuc(k)〉 to L.

14: if vsuc(k) is not in V then

15: Add vsuc(k) to V and Enqueue(vsuc(k), Q).

16: end if

17: end for

18: end while

19: Add a set of links {〈vlast → vinit〉} to L.

20: return The constraint flow G =
{
V,L

}

Astart(e), is the set of primitives, which constrain start(e)
by the temporal relations ‘<’, ‘∼’, and ‘∧’. In a similar

way,Aend(e), the set of end time ancestors of e, is the set of

primitives, which restrict end(e) by ‘∧’ relation.

The ancestor search is performed on each binary

temporal-relation in the scenario. A binary temporal-

relation has backward and forward scopes determined

by adjacent parentheses and logical relations (Fig. 3(a)).

From each of the two scopes, the first and last primitives

in the temporal order are chosen. Then, the ancestors are

determined by bipartite matching between the selected

primitives (Fig. 3(b)). Note that, if a primitive serves a

dummy as its ancestor, the primitive should also serve the

ancestors of the dummy.

Generating Initial Vertices (Line 4). An initial flow-

vertex consists of ‘ready’ and ‘excluded’ conditions only.

If there exist ‘|’ relations in the scenario, multiple initial

vertices are created (Fig. 2(a)). The parser checks the

existing ‘|’s and then generates initial vertices for all

possible combinations of ‘excluded’ primitives. Also, all

dummies are set to ‘excluded’.

Generating Successive Vertices (Line 8). To traverse un-

known graphs, the parser should generate successive ver-
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A < B&(C < D)
︸ ︷︷ ︸

∧ (E ∧ F )
︸ ︷︷ ︸

∼ G

first firstlast last

backward
scope

forward
scope

(a) Scope analysis

B

C

D

E

backward scope forward scope

E ∈ Aend,∧
(B) , B ∈ Astart,∧(E) ,

E ∈ Aend,∧
(D) C ∈ Astart,∧(E)

(b) Search for ancestors by bipartite matching

Figure 3. An example for ancestor search. Search at the circled

‘∧’ is performed with the sets of primitives {B,C,D} and {E},

which are temporally first or last on its backward and forward

scopes. The set of ancestors for one of the primitives includes the

other elements, which are bipartitely matched with the primitive.

tices of the vertex, where it is currently positioned. First,

the parser checks how each primitive can shift its condition

from the current condition. The primitives can keep their

conditions, or each primitive can shift its condition if its an-

cestors do not restrict the shift at the current vertex. The

possible shifts of each condition are summarized in Table

2. Once the possible condition-shifts of each primitive are

identified, the successors are generated by the combinations

of the shifts. Note that the set of the successive vertices al-

ways include the current vertex.

Additionally, each group in U can be activated again

when the entire group primitives are deactivated. Therefore,

the entire primitives grouped by the same ‘+’ relation can

shift their conditions to ‘waiting’ (or ‘excluded’ when there

exist ‘|’ relations among them) at once. Different groups

have different labels for the ‘waiting’ condition to handle

nested ‘+’ scopes.

Constraint Flow Construction From the initial flow ver-

tices, the parser constructs a flow structure by iterative gen-

eration (Line 8) and search of the structure. The search

strategy is similar to the BFS algorithm, and is implemented

by a queue (Line 7 and 15). During the construction, the

parser finds the last vertices whose entire conditions are ‘ex-

cluded’, ‘finished’ or ready to be ‘finished’ (Line 11). After

the search, the parser adds links from the last vertices to the

initial vertices for recurrences of the target event (Line 19).

5. Composite event recognition

Event recognition is challenging due to severe prepro-

cessing noises. In addition, most scenario-based approaches

suffer from huge search spaces because the set of (even fea-

sible) interpretations grows exponentially over time.

The constraint flow addresses both of the above prob-

lems. First, in the constraint flow, the sequential proba-

bilistic inference with the scenario constraints effectively

suppresses noisy observations. Second, the search space to

maintain the globally optimal interpretation is bounded by a

fixed size through the constraint flow; the optimal solution

is obtained by dynamic programming efficiently. Therefore,

one can infer the optimal solution without any assumptions

or heuristics.

5.1. Constrained optimization for recognition

We regard composite-event recognition as a constrained

optimization problem. The search space is restricted to the

set of feasible interpretations. The constraint flow is traced

to generate feasible interpretations. Let v1:t be a tracing

result up to the tth time step, and x be the binary projection

for the quinary conditions of the trace; x(v1:t) is a feasible

interpretation at the tth time step (e.g., X15 in Fig. 2(b)).

The optimal solution is selected from the feasible set. The

objective function, the measure of optimality, is designed

by considering the two properties of an interpretation: the

observation agreement and the length of idle intervals.

The observation agreement is formulated by the poste-

rior probability of an interpretation, which can be factored

in a sequential manner as

p
(
x(v1:t)|O1:t

)
∝ p

(
Ot|x(vt)

)
· p

(
x(vt)|x(v1:t−1)

)
·

p
(
x(v1:t−1)|O1:t−1

)
, (2)

where Ot represents the observation at time step t, and is

assumed to be dependent only on x(vt). Also, we assume

that a primitive occurs independently of the others. Then,

the conditional observation probability in Eq. (2) becomes

the product of the likelihoods with respect to occurrence of

each primitive:

p
(
Ot|x(vt)

)
=

n∏

i=1

p
(
Oi

t|x(vt)
)
=

n∏

i=1

p
(
Oi

t|x(v
i
t)
)
, (3)

where n is the number of primitives of the scenario. The

state transition probability, P (x(vt)|x(v1:t−1)), is assumed

to be uniform because it is difficult to be learned in advance;

its value is fixed to 2−n because there are the 2n number of

binary vectors in the n-dimensional space. Note that the

constraint flow is not a graphical model but a guide to sieve

the feasible interpretations from the huge set of all interpre-

tations. Therefore, the transition probability is not affected

by the constraint flow structure.

The length of idle intervals measures cohesion among

the time intervals that organize an occurrence of the target

event. If no primitive is activated while the target compos-

ite event is in progress at a time step, then we say the time
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step is idle. Idle time steps are induced by idle vertices

of the constraint flow. An idle vertex only contains ‘inac-

tive’ primitives, but there is at least one ‘finished’ primitive

among them. An idle interval is a set of idle time steps ar-

ranged consecutively (Fig. 2(b)). Because idle intervals are

generally short in real situations, the entire length of idle

intervals of an interpretation is adopted as a penalty term,

which is given by

B(v1:t) =
t∏

j=1

exp
(
− βIb(vj)

)
,

where Ib(vj) =

{
1, if vj is idle,

0, otherwise.
(4)

The objective function, f is defined by the product of the

two measurements in Eq. (2) and (4) as

f(v1:t) = p
(
x(v1:t)|O1:t

)
· B(v1:t)

∝ exp
(
− βIb(vt)

)
· p

(
Ot|x(vt)

)
· f(v1:t−1).(5)

Because the penalty of Eq. (4) needs the constraint flow in-

formation, the objective function takes a flow trace (e.g.,

V15 in Fig. 2(b)) instead of an interpretation as its input.

Then, the optimal interpretation becomes the binary projec-

tion of the trace (e.g., X15 in Fig. 2(b)), which maximizes

the objective function.

5.2. Recognition with constraint flow

The objective function in Eq. (5) is optimized at each

flow vertex vk (vertex in Fig. 2(a)) and each time step se-

quentially by dynamic programming:

max
v1:t−1

f([v1:t−1, vt = vk]) ∝ exp
(
− βIb(v

k)
)
· p

(
Ot|x(v

k)
)

·max
vt−1

{
max
v1:t−2

f([v1:t−2, vt−1])
}
, (6)

where v1:t−1 is a trace matrix and vt is a column vector. At

the initial stage of recognition, the procedure starts from the

initial flow vertices; f(v0) is 1 if v0 is an initial vertex and

0 otherwise. Let Vt(v
k) be the trace, which maximizes the

objective function in a flow vertex vk at time step t.

Vt(v
k) =

[
arg max

v1:t−1

f([v1:t−1, vt = vk]), vt = vk
]
.

(7)

We only need to maintain Vt(v
k) with f(Vt(v

k)) for each

flow vertex vk to sequentially optimize the objective func-

tion because only the optimal trace in each vertex at the

current time step is used to compute the optimal trace at the

next time step.2 The optimal interpretation at the tth time

step is given by

X̂t = x
(
argmax

v1:t
f(v1:t)

)
= x

(
arg max

Vt(vk)
f(Vt(v

k))
)
.(8)

2This means that one can always find the optimal solution by holding

only one trace per each flow vertex at each time step.

In summary, our recognition algorithm has the follow-

ing advantages. First, the scenario constraints can be easily

combined with the sequential and run-time inference frame-

work. Second, the number of the traces needed to find the

optimal interpretation is bounded by the number of the flow

vertices. Therefore, the size of the search space is not a pa-

rameter anymore if the number of the flow vertices is toler-

able in the system. Third, an iterative recognition of a target

composite event is available by linking the last vertices to

the initial vertices on the constraint flow.

6. Experiments

We validated our approach with two videos—a surveil-

lance video and a tennis video, which involve 8 transactions

between a customer and a casher with complex structure

(Table 1) and natural tennis plays between a server and a

receiver (Table 3), respectively. Our event recognition algo-

rithm with the constraint flow annotates complex composite

events accurately in spite of noisy primitive detections.

6.1. Preprocessing: primitive detection

In both sequences, moving objects in the scene are de-

tected by a pixel-wise background subtraction [12], and

each object is identified by the trained appearance model—

hand, money and item in the surveillance sequence, and

players and a ball in the tennis sequence. The primitives

are recognized based on the prior information of spatial re-

lations among the objects (e.g., a hand and money mov-

ing together), and scene contexts (e.g., the locations of the

desk and the barcode scanner). In the tennis video, we

need a more sophisticated action recognizer to extract prim-

itives. The motion context descriptors [14] obtained from

the objects are classified by the large margin nearest neigh-

bor (LMNN) classifier [15] to recognize four kinds of ac-

tions: ‘serve’ for the primitive Serve[A], ‘forehand stroke’

and ‘backhand stroke’ for the primitive Swing[A], and ‘other

actions’ for others. Note that the primitive recognition cor-

responds to the likelihood function, p
(
Oi

t|x(v
i
t)
)

in Eq. (3).

Precision and recall rates of the primitive detection in the

both sequences are illustrated in Fig. 4. The primitive recog-

nition is significantly noisy because of uncertain video ob-

servations and inevitable errors caused by the flexibility of

our scenario description method; our method allows multi-

ple occurrences of a primitive in a scenario and a primitive

may be interpreted to different meanings. With the noisy

signals, however, our system works successfully by using

the constraint flow (Fig. 5).

The common scenario parser and composite-event rec-

ognizer are employed in all experiments. The entire sys-

tem requires only two parameters; the scenario for the target

event E, S(E), and the penalty weight for idle time steps,

β in Eq. (4).
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Comp. event Scenario

Service[A] Serve[A] ∧ Part[A, ball]

Stroke[A] (Meet[A, ball] < Part[A, ball]) ∧ Swing[A]

TennisPlay Service[ser] < (# | Service[ser]) < . . .

(# | (Stroke[rec] < Stroke[ser])+) < . . .

(# | Stroke[rec])

Table 3. The scenario of a tennis play and supporting composite

events. Meet[A, B], Part[A, B], Serve[A], and Swing[A] are the prim-

itives. For example, Stroke[A] means ‘an actor A swings between

“the ball approaches” and “the ball leaves”.’ The target event, Ten-

nisPlay is described in a hierarchical manner.

6.2. Surveillance sequence

In the surveillance sequence, our system recognizes mul-

tiple Transactions accurately; it is not straightforward to rec-

ognize multiple occurrences of the target event in other al-

gorithms. The intermediate composite events for the Trans-

action are also recognized successfully (see the overlap

of black and purple bounding boxes in Fig. 5(a)). Note

that the system does not assume any time windows as in

[9, 11] or perform greedy pruning as in [7] to reduce search

space. It only select potentially optimal traces by dynamic

programming—476 traces at each time step, which is equal

to the number of flow vertices.

The system also provides semantic interpretations of the

video contents, which shows the flexibility of our frame-

work. For example, a cashier may or may not give change

during transactions (6th and 7th transactions). Our sys-

tem handles the variations by using just one scenario.

Also, the interpretation can be used to check the legality.

There are two illegal events in the surveillance video—

a missing Payment in the 5th transaction and a missing

TakeItem[customer] in the 8th transaction. The system is

able to identify the illegal events by analyzing the optimal

interpretation. For example, in the interpretation of the ille-

gal transaction with a missing Payment, some primitives for

Payment have too short time intervals; they are considered

as hallucinations, which mean missing signals.

6.3. Tennis sequence

The primitive recognition is considerably noisy in the

tennis sequence (Fig. 4), and the number of strokes to com-

prise TennisPlay event is unknown. Despite such chal-

lenges, our event recognitions and annotations are mostly

successful in this sequence as illustrated in Fig. 5(b). Note

that our framework has the capability to recognize complex

composite events accurately, even with significant noises in

primitive recognition, by applying the constraint flow gen-

erated by our scenario description method.
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Figure 4. Comparison between the frame-wise performances with

and without the constraint flow. The performance of raw primitive

detections was measured by thresholding their likelihoods. The

performance of our system is as follows: 0.90 for precision, 0.84

for recall, 0.0053 for false positive rate (surveillance), and 0.69 for

precision, 0.57 for recall, 0.033 for false positive rate (tennis).

7. Conclusion

We proposed a novel framework to describe and recog-

nize complex video events. Our event description method

facilitates flexible representations through the various rela-

tional predicates. The constraint flow reduces the search

space dramatically without any assumptions or heuristics,

and the optimal solution is found by dynamic programming

in an on-line manner. We demonstrated the effectiveness of

event recognition by our algorithm in complex videos.
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