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Abstract

We propose a novel background subtraction algorithm

for the videos captured by a moving camera. In our tech-

nique, foreground and background appearance models in

each frame are constructed and propagated sequentially by

Bayesian filtering. We estimate the posterior of appear-

ance, which is computed by the product of the image likeli-

hood in the current frame and the prior appearance prop-

agated from the previous frame. The motion, which trans-

fers the previous appearance models to the current frame,

is estimated by nonparametric belief propagation; the ini-

tial motion field is obtained by optical flow and noisy and

incomplete motions are corrected effectively through the

inference procedure. Our framework is represented by a

graphical model, where the sequential inference of motion

and appearance is performed by the combination of belief

propagation and Bayesian filtering. We compare our algo-

rithm with the existing state-of-the-art technique and evalu-

ate its performance quantitatively and qualitatively in sev-

eral challenging videos.

1. Introduction

Background subtraction typically refers to an algorithm

to detect moving objects in the scene when the video is cap-

tured by a stationary camera. Various background subtrac-

tion algorithms have been proposed so far [1, 4, 6, 7, 10,

13, 15, 16, 19, 21, 23], where the main concern is adap-

tive background modeling for each pixel or region in the

static monocular camera environment. The separation be-

tween foreground objects and background scene in videos

captured by a moving camera is much more difficult; mo-

tion estimation frequently suffers from various challenges

due to complex scene structures, motion blurs and incon-

sistent features, and modeling and updating foreground and

background appearances are not straightforward because of

the error accumulation in image registration and appearance

modeling procedure. Since moving camera setup assumes

more general environment in background subtraction, we

call the problem generalized background subtraction.

Generalized background subtraction problem is not com-

pletely new, and there are several studies related to fore-

ground and background segmentation in a moving cam-

era environment. Motion segmentation is one of the most

popular approaches for this problem, where camera motion

is canceled by estimating dominant background motion to

identify foreground objects [5, 9]. However, these methods

are based on a strong assumption that the background is able

to be modeled effectively with a single plane, which is not

generally valid. A more advanced approach is the combina-

tion of plane and parallax framework, where a homography

is first computed to match the features in two consecutive

frames and the residual pixels are further registered by par-

allax estimation [22]. This technique involves less restric-

tions than the homography-only based algorithms, but still

assumes that there exists a dominant plane for matching by

homography.

On the other hand, [14] combines image registration and

appearance modeling for foreground/background segmen-

tation. In this technique, the factorization method [18] is

utilized for image registration since it can handle more gen-

eral 3-D motions conceptually. However, this algorithm

is based on a simple modeling and propagation of fore-

ground and background appearances, and requires a reli-

able long-term feature tracking method to run the factor-

ization method; it depends heavily on the performance of

particle video [12], which is the technique used for the ro-

bust motion estimation in [14]. The appearance models by

this method are susceptible to be corrupted and unreliable

due to error accumulation by temporary failures in motion

estimation and feature sparsity in particle video.

We propose a systematic probabilistic inference frame-

work based on the combination of nonparametric belief

propagation (BP) and sequential Bayesian filtering for gen-

eralized background subtraction. Nonparametric BP is em-

ployed for the robust motion estimation resistant to noisy

and incomplete observations, and Bayesian filtering propa-

gates the appearance models sequentially in a reliable man-



ner by integrating previous appearances and current image

observations.

In our framework, motion is first obtained by optical flow

and then estimated by nonparametric BP in Markov Ran-

dom Field (MRF). The prior appearance models are pre-

dicted by integrating the appearance models of the previ-

ous frame subject to the currently estimated current motion.

The foreground/background likelihood ratio of each pixel is

computed based on both of the motion and the prior appear-

ance information; the likelihood ratio determines the label

of each pixel. The labels are used to update motion, and the

predictions of foreground/background appearances are im-

proved by the updated motion; the labels are re-estimated

based on the updated motions and appearances. Such itera-

tive procedure is repeated until convergence in each frame.

After the labels converge, the prior appearance models are

combined with the foreground/background observations in

the current frame to obtain the posterior appearance models

in the sequential Bayesian filtering framework.

The rest of the paper is organized as follows. We de-

scribe the overview of our algorithm in Section 2, and fore-

ground/background appearance modeling technique with

motion estimation is presented in Section 3. Section 4 il-

lustrates the performance of our algorithm with challenging

videos.

2. Algorithm overview

We estimate foreground/background appearance models

in the videos captured by a moving camera, where a video

frame is divided into a regular grid of blocks. Our algorithm

is based on the following assumptions:

• At the beginning of a sequence, the major motion in

the scene belongs to background and the outliers are

considered as foreground.

• Spatially adjacent background (or foreground) areas

have similar motions.

• The temporal variations of foreground and background

appearances are smooth subject to the proper image

registration by motion estimation.

The first assumption is to obtain reliable foreground and

background models through motion segmentation in the

first few frames. The second and third assumptions allow us

to take spatial and temporal evidences for estimating block-

wise motion and appearance models.

The graphical model reflecting the last two assumptions

is illustrated in Figure 1; the second assumption is em-

bedded by four-neighborhood pairwise MRF on the motion

random variables, and the third assumption is reflected by

the directed edges in the graphical model. There are two

layers—motion and appearance—in the graphical model.
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Figure 1. The proposed graphical model for blockwise model esti-

mation. The solid discs and squares represents the optical flow ob-

servations for motion models and image observations for appear-

ance models, respectively. The same graphical model is applied to

foreground and background.

Let hi
ℓ,t be a random variable following a color distribu-

tion based on the pixels with foreground or background

labels ℓ ∈ {f, g} in the ith block at time t, and Hℓ,t =

{h1
ℓ,t, . . . ,h

N
ℓ,t} be a set of the random variables, where N

is the number of the blocks. Also, denote by vi
ℓ,t a random

variable representing a motion distribution in the ith block

with label ℓ, and by Vℓ,t = {v1
ℓ,t, . . . ,v

N
ℓ,t} a set of the

random variables. Both of hi
ℓ,t ∈ R

3 and vi
ℓ,t ∈ R

2 are

continuous random variables. Note that Ht ∈ {Hb,t,Hf,t}
and Vt ∈ {Vb,t, Vf,t}.

We estimate all marginal posterior probabilities with

respect to each of the random variables in the graphi-

cal model. At the beginning of each frame, initial fore-

ground/background labels (Linit
t ) are given by a simple mo-

tion segmentation; the label at pixel x at time t is denoted

by Lt(x) ∈ {f, b}. The models of Vt are estimated by a

nonparametric BP based on Mt, which is the pixelwise op-

tical flow in an input image It. After the inference of Vt is

completed, the prediction of Ht denoted by Ht|t−1 is esti-

mated based on Vt and Ht−1. Note that the models of Vt

and Ht|t−1 are then used to revise Lt. Because different la-

bels organize different foreground/background observations

for Vt, the algorithm repeats the model estimation for Vt

and Ht|t−1 until the Lt is converged. Finally, the model of

h
i
t is computed by the product of the prediction (the model

of hi
t|t−1) and the observation likelihood from the ith block

in It; it is a Bayesian filtering approach.

3. Model estimation and labeling by inference

Both of the motion and appearance random variables

are in continuous state space; we model their distributions



by Gaussian kernel density estimation. As discussed in

Section 2, the motion is estimated by nonparametric BP

in MRF, and the appearance model is propagated in a se-

quential manner by Bayesian filtering. The inference for

the graphical model is performed for foreground and back-

ground separately but identically, and we sometimes omit

the label ℓ in the random variables for simplicity. The de-

tails of our hybrid inference algorithm is described below.

3.1. Motion estimation by nonparametric BP

We estimate the motion of the ith block at time t by

the marginal posterior probability p(vi
t|Mt). BP is a

well-known framework to find such marginal probabilities,

which we call believes, for the entire latent variables simul-

taneously [11]. However, the conventional discrete BP is

not available in our case because vi
t is in a continuous state

space. So, we adopt nonparametric BP whose believes and

messages are Gaussian mixtures [17].

We construct a pairwise MRF; the set of vertices V con-

tains the random variables in Vt and the set of edges E
represents pairwise neighboring relationships in the regular

grid structure of the blocks as in the motion layer in Fig-

ure 1. The joint posterior probability with respect to Vt in

the MRF model is given by

p(Vt|Mt) ∝
∏

i∈V

Φ(vi
t,Mt)

∏

(i,j)∈E

Ψ(vi
t,v

j
t ). (1)

The observation clique potentials Φ are modeled by Gaus-

sian kernel density estimation whose kernel points are the

associated image observations in the ith block as

Φ(vi
ℓ,t,Mt) =

∑

{x̂|x̂∈R(i),Lt(x̂)=ℓ}

α N
(
vi
ℓ,t;Mt(x̂),ΣΦ

)
, (2)

where α is a normalized weight, R(i) is a set of pixels in

the ith block, and ΣΦ is kernel bandwidth for motion obser-

vation. The compatibility clique potentials Ψ are based on

a single Gaussian distribution given by

Ψ(vi
t,v

j
t ) = N (vi

t − v
j
t ; 0,ΣΨ), (3)

where ΣΨ is kernel bandwidth for motion compatibility.

The compatibility clique potential between a pair of neigh-

boring blocks encourages the blocks to have similar mo-

tions; it corresponds to our second assumption.

The marginal posteriors for each vi
t are approximated by

sum-product message-passing algorithm [11]. In loopy BP,

the messages are synchronously updated by iteration. At the

first iteration, the message sent from v
j
t to vi

t is initialized

as

m1
j→i(v

i
t) =

∫

R2

Ψ(vi
t,v

j
t )Φ(v

j
t ,Mt)dv

j
t , (4)

and the message at iteration n > 1 is updated to

mn
j→i(v

i
t)

=

∫

R2

Ψ(vi
t,v

j
t )Φ(v

j
t ,Mt)

∏

k∈η(j)\i

mn−1
k→j(v

j
t )dv

j
t , (5)

where η(j) denotes the set of the indices of the neighbor-

ing blocks of the jth block. The messages are iteratively

updated until they converge or the predefined number of it-

erations is reached. Finally, the belief of vi
t, which means

the motion model of ith block, is derived from the incoming

messages and its own observation as

p(vi
t|Mt) ∝ Φ(vi

t,Mt)
∏

j∈η(i)

m∗
j→i(v

i
t), (6)

where m∗
j→i(v

i
t) is the message in the last iteration. Note

that all messages and believes are Gaussian mixtures. Be-

cause we define Ψ as a function of the difference between

two latent variables, a message is simply derived from a

Gaussian convolution of a product of Gaussian mixtures,

which is also a Gaussian mixture (Eq. (4) and (5)). How-

ever, the number of mixture components increases exponen-

tially by the product of Gaussian mixtures; our algorithm

approximates the original density by a Gibbs sampling [3]

and bounds the number of mixture components [17] during

motion estimation.

The nonparametric BP for motion model estimation re-

duces the noise in optical flow and recovers the missing

background motion by message passing as in Figure 2. So,

our algorithm can predict appearances for unseen blocks

because the motion models of such blocks are estimated

through the inference by message passing.

3.2. Appearance prediction via motion

The appearance model of the ith block at the time step t

is the posterior probability with respect to h
i
t given obser-

vations and is estimated by Bayesian filtering as

p(hi
t|M1:t, I1:t) ∝ p(It|h

i
t)p(h

i
t|M1:t, I1:t−1), (7)

where p(It|h
i
t) is the observation likelihood and

p(hi
t|M1:t, I1:t−1) is the prediction with respect to

h
i
t. With consideration of the corresponding block motion,

the prediction is given by

p(hi
t|M1:t, I1:t−1)

=

∫

R2

p(hi
t|v

i
t,M1:t−1, I1:t−1)p(v

i
t|Mt)dv

i
t. (8)

So, we first estimate the motion model p(vi
t|Mt) as de-

scribed in Section 3.1, and then compute the prediction of

the current block appearance via the motion model. Given

a backward-motion v̂
i
t, we model p(hi

t|v̂
i
t,M1:t−1, I1:t−1)



(a) Input image (b) Pixelwise motions

(c) Blockwise BG mean motions (d) Blockwise FG mean motions

Figure 2. Motion model estimation of background (BG) and fore-

ground (FG) by nonparametric BP. Color and intensity denote the

direction and size of motion, respectively. The missing back-

ground motion was recovered by message passing as shown in (c).

In a similar manner, the blocks that do not contain foreground ob-

servations but are near foregrounds also have foreground motion

models estimated by incoming messages as shown in (d).

in Eq. (8) as a mixture of predictions from the appearance

models in the previous frame, which is given by

p(hi
t|v̂

i
t,M1:t−1, I1:t−1)

=

N∑

k=1

γik(v̂
i
t)

∫

R3

p(hi
t|h

k
t−1)p(h

k
t−1|M1:t−1, I1:t−1)dh

k
t−1,

(9)

where γik(v̂
i
t) is the responsibility of hk

t−1 with respect to h
i
t

by considering the given backward motion v̂
i
t; it considers

how much area of the kth block is overlapped with the ith

block translated by v̂
i
t, and is defined by

γik(v̂
i
t) =

∫

R(k)

U(ν; ci + v̂
i
t)dν

≈

∫

R(k)

N (ν; ci + v̂
i
t,Σγ)dν =

∫

R(k)

N (ν − ẑ
i
t; 0,Σγ)dν,

(10)

where ci and ẑ
i
t = ci + v̂

i
t are the current and previous

center location of the ith block, respectively. The exact

responsibility of the kth block is obtained by integrating

the uniform distribution U(ν; ẑit) on the kth block region

R(k), where U(ν; ẑit) is nonzero in the region of the unit

block centered at zit. For the ease of implementation, we

approximate the uniform distribution to a Gaussian distri-

bution whose mean and covariance are zit and Σγ , respec-

tively (Figure 3(a)). Finally, the state transition probability

in Eq. (9), which involves our third assumption, is given by

p(hi
t|h

k
t−1) = N (hi

t − h
k
t−1; 0,Σtr), (11)

13 85 170

13 85 170

13 85 170

Figure 4. Sequential estimation of blockwise appearance models

in the skating sequence. (Row 1) Input image. (Row 2) Mean

colors of background block appearance models. (Row 3) Mean

colors of foreground block appearance models.

where the covariance matrix Σtr allows smooth variations

between appearances in time.

The block appearance prediction in Eq. (8) is simpli-

fied by Eq. (9) to (11), and is derived in Eq. (12). Note

that πi
k is the integration of the Gaussian convolution of

the density function with respect to zit (T1 in Eq. (12)) in

the kth block region R(k) (Figure 3(b)); the density func-

tion p(zit|Mt) is directly derived from the motion model

p(vi
t|Mt). pk(h

i
t|M1:t−1, I1:t−1) (T2 in Eq. (12)) is ob-

tained by the Gaussian convolution of the kth block appear-

ance model in the previous time step.

In summary, the prediction of the block appearance

model is a weighted sum of Gaussian-blurred block appear-

ance models of the previous frame, where the weights are

derived from the expected responsibilities considering the

distribution of the block motion. Our Bayesian filtering suc-

cessfully estimates the appearance models in time despite

dynamic scene changes as illustrated in Figure 4. Note that

the appearance models of the occluded background regions

are estimated reasonably via prediction.

3.3. Pixelwise label estimation

The pixelwise label Lt is just the final output in

an ordinary background subtraction algorithm. How-

ever, in our framework, the labels in a block determine

the observation likelihood p(It|h
i
t) and the prior density

p(hi
t|M1:t, I1:t−1) for block appearance estimation; Lt is

important to obtain accurate models by propagation in time.

We employ the standard loopy BP [2, 11] for label in-

ference on the four-connected image grid. We denote two

likelihood functions, based on the block motion models and

the predictions of block appearances, by

ζi
t(v̂, ℓ) = p(vi

ℓ,t = v̂|Mt), (13)

ξit(ĥ, ℓ) = p(hi
ℓ,t = ĥ|M1:t, I1:t−1). (14)

The observation clique potential of the pixel x in the ith



p(hi
t|M1:t, I1:t−1)

=

N∑

k=1

∫

R2

γik(v
i
t)p(v

i
t|Mt)dv

i
t ·

∫

R3

p(hi
t|h

k
t−1)p(h

k
t−1|M1:t−1, I1:t−1)dh

k
t−1

≈
N∑

k=1

∫

R(k)

∫

R2

N (ν − zit; 0,Σγ)p(z
i
t|Mt)dz

i
t

︸ ︷︷ ︸

T1: Gaussian convolution of the density w.r.t. the previous location

dν ·

∫

R3

N (hi
t − h

k
t−1; 0,Σtr)p(h

k
t−1|M1:t−1, I1:t−1)dh

k
t−1

︸ ︷︷ ︸

T2: Gaussian convolution of the previous block appearance model

=

N∑

k=1

πi
k pk(h

i
t|M1:t−1, I1:t−1). (12)

c
i

ẑ
i
t

c
i

U(ν; ẑit = c
i + v̂

i
t) N (ν; ẑit = c

i + v̂
i
t,Σγ)

(a) Approximation of the responsibility distribution

p(zit|Mt)
∫

N (ν − z
i
t;0,Σγ)p(z

i
t|Mt)dz

i
t {πik}

N
k=1νν

(b) Computation of the mixture weights by blockwise integrations

Figure 3. Visualization to compute responsibilities and their expectations for the mixture of predictions. (a) A uniform responsibility distri-

bution U(ν; ẑit) is determined by a given backward motion v̂
i
t; the exact responsibilities for the blocks are obtained by integrating U(ν; ẑit)

on each block region. Because we approximate U(ν; ẑit) to a single Gaussian distribution N (ν|ẑit,Σγ), the responsibilities are also ap-

proximated (Eq. (10)). (b) Because a responsibility is a function of vi
t, which is a random variable following own distribution p(vi

t|Mt),
we obtain the expectation of the responsibility by integrating it over vi

t with p(vi
t|Mt). Consequently, the expected responsibility of the

kth block, which is denoted by πi
k, is derived by integrating the convolution of p(zit|Mt) and N (ν|zit,Σγ) on the region of the kth block.

The expected responsibilities are the mixture weights for aggregating the predictions (Eq. (12)).

block is given by

ϕ(Lt(x) = b) =
ζi
t(Mt(x), b) · ξ

i
t(It(x), b)

∑

ℓ∈{b,f} ζ
i
t(Mt(x), ℓ) · ξ

i
t(It(x), ℓ)

,

ϕ(Lt(x) = f) = 1− ϕ(Lt(x) = b). (15)

The compatibility clique potential between a pair of neigh-

boring pixels x and y is given by

ψ(Lt(x),Lt(y)) =

{
λ, if Lt(x) = Lt(y),
1− λ, otherwise,

(16)

where 0.5 < λ < 1. The believes with respect to the pix-

elwise labels are computed by the sum-product message-

passing algorithm [11] with the potentials we designed;

the labels are determined by comparing the foreground and

background believes at each pixel. For the details about pix-

elwise inference, refer to [2].

Because the label Lt changes the configuration of the

motion observations too, the algorithm repeats the motion

estimation (Section 3.1) and appearance prediction (Sec-

tion 3.2) until Lt converges.

The evidences for pixelwise labeling—motion likeli-

hood (Eq. (13)), appearance likelihood (Eq. (14)), and their

combination—are illustrated in Figure 5. Moving objects

similar in motion with camera or background may not be

detected by motion likelihoods as in Figure 5(b). Appear-

ance likelihoods are not reliable when foreground and back-

ground have similar colors as in Figure 5(c). By the combi-

nation of both likelihoods in Eq. (15), we obtain more stable

evidences for pixelwise label estimation (Figure 5(d)).

3.4. Appearance estimation by Bayesian filtering

When Lt is converged, the observation likelihood in

Eq. (7) is modeled by Gaussian kernel density estimation

with the image observations from the corresponding block

region and four neighboring block regions as

p(It|h
i
ℓ,t) =

∑

{x̂|x̂∈R(i),Lt(x̂)=ℓ}

β1 N
(
h
i
ℓ,t; It(x̂),Σh

)

+
∑

j∈η(i)

∑

{x̂|x̂∈R(j),Lt(x̂)=ℓ}

β2 N
(
h
i
ℓ,t; It(x̂),Σh

)
, (17)



(a) Input image (b) Motion likelihoods

(c) Appearance likelihoods (d) Appearance and motion

Figure 5. The pixelwise likelihood ratios. Both motion and appear-

ance likelihoods have limitations—missing leg in (b) and noisy

head in (c), but the combination of motion and appearance cues

improves the result significantly.

where β1 and β2 are normalized weights (β1 > β2).

Then the block appearance model (Eq. (7)), which is

equivalent to the posterior probability with respect to h
i
t,

is estimated by product of the prediction (Eq. (12)) and the

likelihood (Eq. (17)). Because both of the prediction and the

likelihood are Gaussian mixtures, the appearance model is

again a Gaussian mixture; we employ a Gibbs sampling [3]

to prevent the exponential increase of the number of mixture

components over time.

4. Experiments

We evaluate our algorithm qualitatively and quantita-

tively in five challenging sequences. Our results are com-

pared with other methods including [14], one of the state-of-

the-art algorithms for generalized background subtraction.

4.1. Preprocessing

Optical flow and initial motion segmentation. We com-

pute optical flows by [8] to obtain the observation of motion.

At the first stage of each frame t, we perform motion seg-

mentation over Mt by RANSAC with epipolar constraints

and initialize the labels; Linit
t (x̂) = f if Mt(x̂) is outlier,

where x̂ is a pixel location in image. The motion segmen-

tation based on epipolar constraint can handle more general

motions than homography and produces reasonable results

in practice. Note that the motion estimation and segmenta-

tion is not our objective. We attempt to estimate foreground

and background models accurately through probabilistic in-

ference given reasonable low-level motion analysis.

Initialization for filtering. To estimate the initial appear-

ance model p(hi
1|M1, I1), we first generate M1 by com-

paring two images I0 and I1, and then construct Linit
1 by

the motion segmentation of M1. Based on the motion

segmentation result, the global, not blockwise, foreground

and background appearance models are obtained from fore-

ground and background region in the scene, respectively,

by kernel density estimation. The global appearance mod-

els are useful when the motion segmentation misses parts of

foreground objects that are similar in motions with camera.

The foreground/background likelihood ratios for each pixel

are computed based on the global models, and are used to

revise L1 by BP on the four-connected pixelwise MRF [2].

Our algorithm alternates modeling and labeling procedure

several times; after the labels by the global models are ob-

tained, blockwise foreground and background appearance

models are estimated by kernel density estimation based on

the labels. Then, we start the normal procedure for the esti-

mation of motions and appearances introduced in Section 3.

4.2. Experimental results

Our algorithm was tested in three videos—Car1, Peo-

ple1, and People2—in the Hopkins 155 dataset [20], and an-

other two videos downloaded from YouTube—skating and

cycle. In the Hopkins-Car1 sequence, motion segmenta-

tion is errorneous; the motion outliers come from the road,

not from the car (Figure 6). The motions in the Hopkins-

People1 and Hopkins-People2 sequences are relatively gen-

tle, but the accurate motion estimation is not straightforward

since the foreground/background colors are similar in some

areas (Figure 7). The skating involves articulated motions

(Figure 9) and the cycle contains rapid motions and non-

planar background (Figure 10).

To demonstrate the effectiveness of our hybrid infer-

ence technique, we compared our algorithm with three other

methods—motion segmentation, [14]1, and a reduced ver-

sion of our algorithm, which excludes nonparametric BP in

the motion layer inference.

The quantitative comparison results are illustrated in Fig-

ure 11, where the performances are computed based on the

manually annotated groundtruth in every 5 frame. Our algo-

rithm is the best in all videos except the Hopkins-People2,

where we still have a decent performance. It is because the

inference by nonparametric BP and Bayesian filtering im-

proves the quality of motion and appearance models and

our pixelwise labeling reduces the segmentation noises by

the combination and motion and appearance likelihoods.

5. Conclusion

We proposed a novel algorithm for generalized back-

ground subtraction through foreground/background model

1We used optical flow instead of particle video [12] for fair comparison.
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Figure 6. The results of the Hopkins-Car1 sequence. (Row 1)

Ours. (Row 2) Ours except motion layer inference. (Row 3) Mo-

tion segmentation. (Row 4) [14].
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Figure 7. The results of the Hopkins-People1 sequence. (Row 1)

Ours. (Row 2) Ours except motion layer inference. (Row 3) Mo-

tion segmentation. (Row 4) [14].

estimation by a hybrid inference based on nonparametric

BP and Bayesian filtering. Motion models are estimated

by nonparametric BP; it reduces noisy and incomplete mo-

tions. Bayesian filtering propagates appearance models by

3 13 27

3 13 27

3 13 27

3 13 27

Figure 8. The results of the Hopkins-People2 sequence. (Row 1)

Ours. (Row 2) Ours except motion layer inference. (Row 3) Mo-

tion segmentation. (Row 4) [14].

combining the prior appearance model and the current ob-

servation sequentially. We validated our algorithm qualita-

tively and quantitatively in various sequences, and showed

successful background subtraction results.
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