
Learning Occlusion with Likelihoods for Visual Tracking

Suha Kwak Woonhyun Nam Bohyung Han Joon Hee Han

Department of Computer Science and Engineering, POSTECH, Korea

{mercury3,xgene,bhhan,joonhan}@postech.ac.kr

Abstract

We propose a novel algorithm to detect occlusion for vi-

sual tracking through learning with observation likelihoods.

In our technique, target is divided into regular grid cells

and the state of occlusion is determined for each cell us-

ing a classifier. Each cell in the target is associated with

many small patches, and the patch likelihoods observed

during tracking construct a feature vector, which is used

for classification. Since the occlusion is learned with patch

likelihoods instead of patches themselves, the classifier is

universally applicable to any videos or objects for occlu-

sion reasoning. Our occlusion detection algorithm has de-

cent performance in accuracy, which is sufficient to improve

tracking performance significantly. The proposed algorithm

can be combined with many generic tracking methods, and

we adopt L1 minimization tracker to test the performance

of our framework. The advantage of our algorithm is sup-

ported by quantitative and qualitative evaluation, and suc-

cessful tracking and occlusion reasoning results are illus-

trated in many challenging video sequences.

1. Introduction

Visual tracking is one of the most popular problems in

computer vision since it is a crucial task for many real-

world applications. Although visual tracking has been in-

vestigated intensively, there are still many challenges; it fre-

quently suffers from occlusions, appearance changes, sig-

nificant motions, background clutter, etc. Many computer

vision researchers make efforts to overcome the challenges;

various adaptive appearance modeling algorithms are pro-

posed in [12, 15, 21], a couple of algorithms to track an

object with significant motions are introduced in [16, 28],

and discriminative features for tracking are identified and

used to track the target in the presence of background clut-

ter [3, 7, 20].

Among many challenges in tracking problem, occlusion

is one of the most critical issues since it is not straightfor-

ward to generalize and model occlusions. Due to the im-

portance of occlusion reasoning in visual tracking, there

has been a large volume of research related to this prob-

lem in various aspects, but there is no general framework

to identify occlusions explicitly. Some adaptive appearance

modeling techniques attempt to solve the occlusion prob-

lem indirectly by statistical analysis [12, 15, 21], but the

appearance models are susceptible to be contaminated by

long-term occlusions due to their blind update strategies.

The target is divided into several components or patches so

that the occlusion is implicitly reasoned by robust statistics

[1, 6, 13], by patch matching [27], or by spatially biased

weights on target observations [5]. Using multiple cameras

is a good option to handle occlusion problem [8, 9, 19], but

it is not applicable to many videos in hand because it re-

quires a special setup and additional cost for multi-camera

system. On the other hand, several algorithms are proposed

to overcome occlusions in limited conditions; [25] infers the

occlusions among multiple targets in the context of multi-

object tracking, [10] discusses self-occlusion for image reg-

istration in a controlled environment, and [17, 23] reason

the occlusions related to well-known objects such as hands

or upright human bodies based on predefined model con-

straints. Recently, a few attempts to manage occlusions and

other exceptions in tracking are made based on the spatio-

temporal context [11, 26], but they require non-trivial ob-

servation and tracking of objects or features outside target.

Most of the existing occlusion reasoning and handling

techniques have critical limitations such as the need of mul-

tiple cameras, strong models, and environment understand-

ing. More importantly, it is generally difficult to determine

the occlusion status given an observation in tracking scenar-

ios. Motivated by this, we propose an active occlusion de-

tection and handling algorithm for tracking by learning with

observation likelihoods. To detect occlusion, we learn the

patterns of likelihoods based on the data collected during

tracking with and without occlusions. Even though we train

the classifier with several specific videos, the trained clas-

sifier for occlusion detection is universal for general videos

and/or objects because the features for the classifier are ob-

servation likelihoods, not image features. However, training

and testing should be performed in the same environment

for the reliability of our algorithm, and the same tracking al-

gorithm needs to be employed for the both procedures. Note

that the data collection for training is crucial for the perfor-

mance of the classifier in a new sequence since the patterns

of the data observed in testing should be similar to the pat-

terns in training. In our algorithm, the target is divided into

a regular grid, and we determine the state of occlusion for

each cell using the trained classifier. For tracking, the likeli-

hood of each observation is computed based on unoccluded

cells given the occlusion mask, which is constructed by ap-

plying a classifier to the target window at each frame. Our

method has several important advantages as follows:

• We can compute more reasonable observation likeli-

hoods when occlusion is involved because we effec-

tively disregard the occluded cells for observation.

• Our classifier is trained using patch likelihoods asso-

ciated with the cells in the target, and can be used for

any other videos and/or objects to detect occlusions;

we do not train a specialized classifier for a sequence

or a target, but construct a single universal classifier.

• Our classifier is not perfect, but our simulation and ex-

periment support that the decent performance of the

classifier improves tracking accuracy significantly.

• Our occlusion reasoning technique can be integrated

in many generic tracking algorithms—especially,

template-based or part-based algorithms as long as the

observation model is identical.1

The rest of the paper is organized as follows. Our occlu-

sion reasoning algorithm in the L1 minimization tracking is

presented in Section 2, and the classifier for occlusion de-

tection is described in Section 3. We illustrate experimental

results with performance evaluation in Section 4.

2. Tracking with occlusion reasoning

Our occlusion reasoning technique should be incorpo-

rated into a tracking algorithm; particle filter tracking with

the L1 minimization [18] is employed to estimate and prop-

agate the state of the target sequentially. In this section, we

first review the L1 minimization tracking framework, and

present how our occlusion reasoning algorithm is integrated

into the tracking method.

2.1. L1 Minimization tracking

Suppose that T = [t1 t2 . . . tn] ∈ R
d×n and I =

[i1 i2 . . . id] ∈ R
d×d are a set of target templates and triv-

ial templates2, respectively. In the original L1 minimization

1We will mainly describe our occlusion detection framework in the L1

minimization tracking, but also illustrate the applicability to other tracking

methods such as incremental subspace learning [21] in our experiments.
2The trivial templates are special templates with only one element in

each vector (template) one to reduce the error in reconstruction. Therefore,

I is an identity matrix. For the details, see [18, 24].

tracking, the target template, T, as well as the positive and

negative trivial templates, I and −I, are stored to compute

likelihoods and update appearance model. The observation

denoted by y is decomposed as

y = [T I − I]





a

e+
e−



 = Bc subject to c ≥ 0, (1)

where c⊤ = [a⊤ e⊤+ e⊤−] is a non-negative coefficient vec-

tor. Note that a ∈ R
n is a coefficient vector for the target

template, and e+ ∈ R
d and e− ∈ R

d are coefficient vec-

tors for the positive and negative trivial templates, respec-

tively. The good observation of the target can be approxi-

mated with a sparse representation of the stored templates,

B = [T I− I]. The solution is obtained by the regularized

L1 minimization with non-negative constraint [24] as

c∗ = argmin
c
||Bc− y||22 + τ ||c||1, (2)

where || · ||1 and || · ||2 denote the L1 and L2 norms, respec-

tively, and τ is a regularization constant.

The L1 minimization technique is integrated into a par-

ticle filter tracking framework [14]. In particle filtering, the

posterior density of the target state is represented with a set

of weighted samples, where the weight of each sample is

computed by an observation model. The optimization pro-

cess in Eq. (2) is performed for each sample to obtain obser-

vation likelihood. Given a set of particles generated by im-

portance sampling in each frame, the likelihood of the ob-

servation yi corresponding to the i-th sample is obtained by

computing the similarity between yi and the reconstructed

image of yi with non-trivial templates, which is given by

ℓ(yi) = exp

(

−
λ||yi −Tai||

2

d

)

, (3)

where ℓ(·) denotes the likelihood for a given observation,

ai is computed based on Eq. (2), and λ is a constant. The

basic idea in Eq. (3) is that a good observation can be recon-

structed effectively with a set of non-trivial target templates

only. If the appearance of the best sample denoted by y∗ is

not sufficiently similar to the existing target templates, the

least important template in T is replaced by y∗. For the

details about the L1 minimization tracking, refer to [18].

2.2. Occlusion detection and handling

Although the original L1 minimization tracker can han-

dle the occlusions and the corruptions of the observation

conceptually, the performance of occlusion handling is not

so satisfactory in practice, which is partly because the like-

lihood computation and the template update do not consider

the occlusion status. We now tackle the issues and propose

an active occlusion handling algorithm in the existing L1

minimization tracking framework.

When the state of the target is estimated in each frame,

the occlusion mask is constructed by applying the trained

classifier to the target window. Suppose at the moment that

we already have a trained classifier C for occlusion detec-

tion, C : Rp → {0, 1}, where p is the dimensionality of the

feature vectors, 0 and 1 denote non-occlusion and occlu-

sion, respectively. The target region is divided into a 4 × 4
regular grid and the occlusion is detected for each cell us-

ing the classifier C. Note that a single occlusion mask per

frame is obtained from the estimated target window.

The occlusion mask constructed in frame t−1 is utilized

to detect the occlusion status of the target and compute the

likelihood of each observation at frame t. Only unoccluded

cells are considered for reconstruction and likelihood com-

putation. Let ŷi ∈ R
k (k ≤ d) be a vector of unoccluded el-

ements in yi. Note that the same occlusion mask is applied

to the all samples in a time step and the dimensionality of

ŷi (i = 1, . . . ,m), where m is the number of the particles,

is fixed in each frame. The likelihood of ŷi is given by

ℓ(ŷi) = exp

(

−
λ||ŷi − T̂âi||

2

k

)

, (4)

where T̂ ∈ R
k×n is the target templates with only unoc-

cluded pixels and âi is the coefficient vector for T̂ obtained

from the solution of Eq. (2) based only on unoccluded pix-

els. If there is no occlusion, ŷi = yi and T̂ = T. By using

Eq. (4) instead of (3), the effect of the occluded pixels in

the target is removed, and the likelihood for each sample is

more reliable. The occlusion mask at frame t is constructed

by applying the trained classifier to the likelihood vectors

generated from the estimated target window; we generate a

feature vector by computing the likelihoods of the patches

in each cell (Figure 1) and perform the classification for

each cell independently. To compute the patch likelihoods,

we compare the best observation (y∗ = yi∗) and its recon-

structed image (Tâi∗), where i∗ = argmaxi ℓ(ŷi). Note

that the occlusion reasoning is done in the original d di-

mensional space using the entire pixels in the target.

When the occlusion is severe—i.e., the occlusion ratio

is more than a threshold γ1, we do not trust the likelihoods

of all the samples and tracking is performed by the motion

model, which is obtained from the history of the motions of

the target for a fixed length time window δ. In practice, it is

particularly useful when the posterior estimation based on

the observation is not reasonable due to heavy occlusions.

2.3. Template update and feature selection

The template update strategy is same with the original

L1 minimization tracking except that the target template is

replaced only if the occlusion ratio of the new template is

less than a predefined threshold γ2.

Some of 4 × 4 cells within the target may not have suf-

ficient amount of features for motion estimation; it is called

Figure 1. The layout of 17 patches (shaded areas) associated with

a cell (rectangle). The likelihoods of the patches constitute feature

vectors for training and testing.

degeneracy. Tracking performance can be deteriorated by

the cells lacking good features to track, and this situation is

aggravated when most of unoccluded cells are degenerate.

We determine the trackability of a cell by identifying the

number of the degenerate pixels in the cell, and ignore non-

informative cells for tracking. This idea is almost identical

to [22] and improves the localization performance.

3. Learning occlusion with likelihoods

We now describe how to design the classifier for occlu-

sion detection and discuss a couple of important character-

istics related to the classifier. Our main objective is to find

a general and robust algorithm to detect occlusions during

tracking, and we train a binary classifier to determine the

occlusion status. We describe the features and the training

methodology used for our classifier.

3.1. Features for the classifier

Suppose that a p-dimensional feature vector f i =
(f1

i . . . fp
i)

⊤ (i = 1, . . . , q), where q is the number of cells,

is given to the classifier for occlusion detection. Note that,

if the feature vector f i is extracted directly from the target

image, we may need to train the classifier for each target

and each sequence separately, which is not desirable for the

generality of the algorithm. So, we train the classifier over

the likelihood vectors, li = (l1i . . . l
p
i)

⊤, where each ele-

ment in the vector represents the observation likelihood for

the p-th small patch associated with the i-th cell.

We obtain a 17-dimensional feature vector from each cell

in the target based on the 17 associated patches as illustrated

in Figure 1. Although the occlusion detection is performed

to each cell independently, we consider neighborhood in-

formation indirectly by using features overlapped with ad-

jacent cells. By adopting the transformed feature vector

(likelihood vector) instead of the feature vector extracted

from images directly, the trained classifier can be utilized

for general purposes. Note that, in our algorithm, only a sin-

gle classifier is trained for all sequences, objects and cells

within the target.

3.2. Training strategy

Typically, the likelihoods between target model and

candidates decrease over time due to gradual appearance

changes of the target, and the absolute value of the likeli-

hood may be extremely small if significant time has passed

since the target appearance model is constructed. Since

the length of the input video sequence is unknown in ad-

vance, we need to find a reasonable way to limit the lower

bound of the likelihood; otherwise, it is more difficult to ob-

tain a good training dataset since training data should cover

many different orders of magnitude of likelihoods for reli-

able classification performance.

The method we chose to figure out this challenge is the

integration of a tracking algorithm that updates the target

appearance model adaptively; the likelihoods between the

stored target appearance model and new observations do not

decrease indefinitely in practice since the target model is

updated occasionally using the new observations.

On the other hand, if training is performed based on the

likelihood vectors with no consideration of testing environ-

ment, the performance of the classifier for occlusion rea-

soning may not be able to identify the characteristics of

the occlusion in testing phase appropriately. Collecting the

training data whose patterns are similar to the testing data

by modeling occlusions realistically with spatio-temporal

tracking context analysis would improve classification per-

formance. We simulate tracking procedure in collecting the

training data for the classifier.

Because of the two factors, we adopt the L1 minimiza-

tion tracking algorithm with template update strategy [18]

as our tracking algorithm for both training and testing. The

details about training procedure is described next.

3.3. Training the classifier

For training, the groundtruths for the motion and the oc-

clusion mask of the target in all frames are given by manual

annotation. Let gt be the groundtruth observation of the tar-

get at frame t. Also, denote by Bt = [Tt It − It] the set of

the stored target and trivial templates at frame t. Then, the

groundtruth observation gt is represented as

gt = Btct subject to ct ≥ 0, (5)

where c⊤t = [a⊤t e⊤+,t e
⊤
−,t], and the reconstructed target

image rt corresponding to gt is given by

rt = Ttat. (6)

As mentioned earlier, the target region is divided into 4× 4
grid cells and the occlusion status is determined for each

cell independently. Each cell is associated with many small

patches, which are overlapped with the cell fully or partially

as illustrated in Figure 1. Let g
(i,j)
t be the groundtruth ap-

pearance of the j-th patch associated with the i-th cell. A

Algorithm 1 L1 tracking with occlusion reasoning

1: Init. T, hs (degeneracy mask), ho (occlusion mask)

2: h← hs ∨ ho, γ ←
∑q

i=1 h(i)/q.

3: while the target is in the scene do

4: if γ < γ1 then

5: Apply h to {y1, . . . ,ym} → {ŷ1, . . . , ŷm}.

6: Apply h to T→ T̂ = [t̂1, . . . , t̂n].

7: [y∗, ĉ]← L1 Track({ŷ1, . . . , ŷm}, T̂).
8: Compute {l1, . . . , lq} based on y∗ and Tâi∗ .

9: ho(i)← C(li), ∀i = 1, . . . , q.

10: The occlusion ratio γo ←
∑q

i=1 ho(i)/q.

11: if ||y∗ − targmax
i
âi
|| > ξ and γo < γ2 then

12: T← Template Update(y∗,T).
13: Compute hs from y∗.

14: end if

15: else

16: Predict the target state xo with motion prior.

17: [yo, co]← L1 Track({yo},T).
18: Compute {l1, . . . , lq} based on yo and Tao.

19: ho(i)← C(li), ∀i = 1, . . . , q.

20: end if

21: h← hs ∨ ho, γ ←
∑q

i=1 h(i)/q.

22: end while

likelihood vector for training is the collection of p likeli-

hoods from the p patches, where each likelihood in the i-th
cell is given by

lji = l(g
(i,j)
t , r

(i,j)
t) = exp

(

−
||g

(i,j)
t − r

(i,j)
t ||2

σ · dim(g
(i,j)
t)

)

, (7)

where σ is a constant, dim(·) denotes the dimensionality of

a vector, and j = 1, . . . , p. If the i-th cell is occluded, its

label C(li) = 1; otherwise C(li) = 0. Note that a sin-

gle likelihood vector for training is obtained from each cell.

The pixels outside target region are not used to compute the

likelihood in Eq. (7), and the boundary cells may have re-

dundant dimensions in their feature vectors.

Once the positive and negative examples are collected,

we train a linear Support Vector Machine (SVM), which is

used to determine the state of occlusion of each cell in an

on-line manner during tracking. The pseudocode of over-

all tracking procedure with our occlusion reasoning is de-

scribed in Algorithm 1.

4. Experiment

Our occlusion reasoning algorithm for tracking is eval-

uated in various scenarios. We first present the potential

advantages of our algorithm, and illustrate the performance

of our tracking algorithm in several challenging videos.

4.1. Simulation

We present the behavior of the L1 minimization tracking

algorithm with occlusion handling by simulation. Because

our occlusion reasoning is not perfect, we tested the perfor-

mance of the tracking algorithm in the presence of occlusion

detection errors, which is illustrated in Figure 2. For the ex-

periment, groundtruth bounding box, pixel-level occlusion

mask, and cell-level occlusion mask are constructed manu-

ally in each frame; we assume that a cell is occluded if more

than 30% of the pixels in the cell are occluded. We perform

L1 minimization tracking and compare the normalized in-

tersection ratio—intersection over union of two bounding

boxes—between groundtruth and tracking results in each

frame, where the results are generated for 12 different lev-

els in occlusion detection accuracy. The errors in occlusion

detection are simulated by flipping the groundtruth binary

labels of randomly selected cells in the target.

As seen in Figure 2(a), the tracking accuracy with occlu-

sion reasoning does not degrade much with minor or moder-

ate occlusion reasoning errors—it is sometimes even better,

which is interesting. The performance with and without oc-

clusion reasoning is illustrated in Figure 2(b). The cell-level

occlusion reasoning is better than no occlusion reasoning

and as good as perfect pixel-level occlusion reasoning in

tracking, even with non-trivial error rates in occlusion de-

tection. The results in Figure 2 suggest that decent occlu-

sion reasoning improve tracking performance significantly.

4.2. Data

We constructed the dataset for training the linear SVM

classifier based on 8 car blackbox videos downloaded from

YouTube. We manually annotated bounding boxes and the

occlusion masks; the tracking procedure was simulated to

obtain feature vectors for training as described in Sec-

tion 3.3. We obtain 16 feature vectors from the target in

each frame since a target is composed of 4 × 4 grid cells;

we extracted 16,288 feature vectors altogether from the en-

tire dataset to train the classifier.

Five videos are used to evaluate our algorithm, and no

video for training is used in testing; three public datasets—

TUD-Crossing [2], CAVIAR [4], and Dudek [15]—are in-

cluded, and the other two videos are downloaded from

YouTube—campus and accident sequence. All sequences

involve various types of partial and/or full occlusions, and

most of them have multiple occlusions.

4.3. Tracking results

The performance of our algorithm is tested in various

scenarios, and our results are compared with other track-

ing algorithms—incremental subspace learning (IVT) [21]

and L1 minimization tracking (L1T) [18]. To illustrate the

state of the target in image, we used red, purple, orange, and

80 100 120 140 160 180
0

0.5

1

Frame

N
o

rm
a

liz
e

d
 i
n

te
rs

e
c
ti
o

n

(a) Normalized-intersection ratios for the different level of occlu-

sion reasoning accuracies (0/16, 1/16, . . . , 12/16).

0 2 4 6 8 10 12
0.2

0.4

0.6

0.8

The number of error cells

N
o

rm
a

liz
e

d
 i
n

te
rs

e
c
ti
o

n

Without occlusion reasoning

Pixel−level occlusion reasoning

Cell−level occlusion reasoning

(b) Comparisons between with and without occlusion reasoning by

varying the number of error cells.

Figure 2. The simulation of the L1 trackers with occlusion rea-

soning in the campus sequence; there happens a severe occlusion

around frame 120 in the sequence (see Figure 4). In (a), the red and

black lines illustrate the tracking accuracies with no occlusion rea-

soning and perfect pixel-level occlusion reasoning, respectively.

The blue lines denote the accuracies with cell-wise occlusion rea-

soning with errors; the darker means smaller error ratio.

green bounding boxes, which denote tracking results of our

algorithm, L1T, IVT, and groundtruths in the frame, respec-

tively. The occlusion status is also presented at the lower-

right corner in image for our algorithm, and the status of

each block is specified with different intensities—black for

occluded cell, gray for degenerate cell and white for unoc-

cluded and non-degenerate cell.

We first tested our algorithm in the TUD-Crossing se-

quence and the qualitative comparisons are illustrated in

Figure 3. Our tracking algorithm tracked the target success-

fully and maintained target templates accurately even with

multiple occlusions by pedestrians while L1T and IVT were

distracted by the occlusions significantly.

Tracking a moving car in the campus sequence is chal-

lenging because the target is occluded partially and almost

completely by people and another vehicle. As illustrated

in Figure 4, L1T and IVT managed to handle a weak occlu-

sion by pedestrians between frame 20 and 55, but both algo-

rithms failed after a severe occlusion around frame 120, and

could not recover from it. However, our algorithm tracked

the target by identifying small unoccluded areas in the car

accurately; the leftmost part of the target is visible in frame

120 (see the target window in the lower-right corner) and

18 30 70 90 105 120

Figure 3. The results of the TUD-Crossing sequence. (top) ours (red), (bottom) L1T (puple) and IVT (orange); groundtruths are denoted

by green bounding boxes. Our tracking algorithm is successful, but others fail due to multiple occlusions.

25 50 80 110 120 140

Figure 4. The results of the campus sequence. (top) ours (red), (bottom) L1T (puple) and IVT (orange); groundtruths are denoted by green

bounding boxes. The severe occlusion (t = 120) and the long-term occlusions (t = 110, 120, 140) differentiate the performance of three

algorithms.

the occlusion mask coincides with the observation. Also,

our tracking algorithm successfully maintained a long term

occlusion after the severe occlusion.

The performance of the three algorithms are also com-

pared quantitatively by illustrating the normalized bound-

ing box intersection ratios between groundtruths and track-

ing results in Figure 5. Other occlusion reasoning methods

are also tested and the results are included in the figure—

random guessing (ORR) and reasonings based on the like-

lihood of the entire region in each cell (ORM and ORC),

where ORM sets the decision boundary to minimize the

training error and ORC makes a more conservative deci-

sion to declare occlusions. The performance of our algo-

rithm is obviously better than all others, and tracking ac-

curacies of our algorithm are stable even in the middle of

occlusions; note that there are occlusions at t = 20 ∼ 45
and t = 78 ∼ 123 in the TUD-Crossing sequence and at

t = 14 ∼ 54 and t = 83 ∼ 182 in the campus sequence.

Our occlusion detection algorithm is not very accurate as il-

lustrated in Figure 6, but its performance is still better than

others. Note that tracking is significantly improved with

the decent performance of occlusion reasoning, which is a

good property of our algorithm. In our occlusion reason-

ing, the cells with sudden appearance changes or non-trivial

occlusions (but still less than 30%) are sometimes misclas-

sified as occlusions since we trained the classifier based on

likelihoods and binary labels. They degrade our occlusion

reasoning performance, but frequently help the tracker.

Our classifier for occlusion detection is trained with ve-

hicle data only, but the classifier is applied to pedestrian

and face tracking successfully as in Figure 7. This shows

our classifier is useful to unknown general objects, too. Oc-

clusions in these sequences are relatively mild, but the oc-

clusion reasoning is reliable throughout the sequences; the

accuracy of the occlusion reasoning is 0.80 in the CAVIAR

sequence and 0.90 in the Dudek sequence.

By our explicit occlusion detection algorithm, most of

cells in the target may be classified as “occluded”. In this

case, we rely on prediction—motion history—for tracking

instead of observations. We illustrate a comparative result

between our algorithm and L1T in the presence of a full

occlusion in Figure 8. The degree of occlusion including

degeneracy is presented in Figure 9, and the shaded area

denotes the frames tracked by prediction.

Finally, we combined our occlusion reasoning algorithm

with IVT to demonstrate that our algorithm is applicable

to other tracking methods. As illustrated in Figure 10, IVT

with our occlusion reasoning algorithm successfully tracked

the targets in the TUD-Crossing and the campus sequence,

in which the original IVT failed to track the same targets.

30 65 125 230 260 285

8 12 15 55 145 195

Figure 7. The results by applying our classifier to non-vehicle targets. (top) CAVIAR sequence, and (bottom) Dudek sequence.

110 220 235 250 300 450

Figure 8. The results of the accident sequence. (top) ours and (bottom) L1T. Ours is successful after the full occlusion around frame 235.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

O
c
c
lu

s
io

n
 r

a
ti
o

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 i
n
te

rs
e
c
ti
o
n

Frame

Occ. ratio

IVT

L1T

L1T ORR

L1T ORM

L1T ORC

Ours

(a) TUD-Crossing sequence.

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

O
c
c
lu

s
io

n
 r

a
ti
o

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

O
c
c
lu

s
io

n
 r

a
ti
o

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 i
n
te

rs
e
c
ti
o
n

Frame

Occ. ratio

IVT

L1T

L1T ORR

L1T ORM

L1T ORC

Ours

(b) campus sequence.

Figure 5. The quantitative comparisons of 6 tracking algorithms—

IVT, L1T, ORR, ORM, ORC and ours. The pixel-level

groundtruth occlusion ratio over time is represented by shaded

area. The average normalized intersection ratios are 0.54, 0.61,

0.63, 0.60, 0.51 and 0.86, respectively, in the TUD-Crossing se-

quence, and 0.54, 0.66, 0.65, 0.48, 0.66 and 0.84, respectively, in

the campus sequence.

Note that IVT regularly updates the target templates by in-

cremental subspace learning.

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

O
c
c
lu

s
io

n
 r

a
ti
o

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

Frame

Occ. ratio

L1T ORR

L1T ORM

L1T ORC

Ours

(a) TUD-Crossing sequence.

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

O
c
c
lu

s
io

n
 r

a
ti
o

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

A
c
c
u
ra

c
y

Frame

Occ. ratio

L1T ORR

L1T ORM

L1T ORC

Ours

(b) campus sequence.

Figure 6. The quantitative comparisons of 4 occlusion reason-

ing algorithms over time—ORR, ORM, ORC and ours. The

pixel-level groundtruth occlusion ratio over time is represented by

shaded area. The accuracies for the entire sequence are 0.51, 0.71,

0.77 and 0.86, respectively, in the TUD-Crossing sequence, and

0.50, 0.32, 0.52 and 0.73, respectively, in the campus sequence.

5. Conclusion

We proposed an explicit algorithm to detect occlusions

for visual tracking. Our algorithm provides a simple but

effective way to handle occlusions in tracking by learning

18 30 70 90 105 120

25 50 80 110 120 140

Figure 10. The results by applying our occlusion reasoning algorithm to IVT. (top) the TUD-Crossing sequence and (bottom) the campus

sequence. See Figure 3 and Figure 4 to compare with the corresponding results of IVT without occlusion reasoning.

160 180 200 220 240 260 280 300 320
0

0.5

1

Frame

U
n
o
c
c
lu

d
e
d
 a

re
a
 r

a
ti
o

Figure 9. The degree of occlusion including degeneracy in tracking

the accidient sequence. The target is almost fully occluded in t =
234 ∼ 242 (shaded area). We ignore observations and track by

prediction if the unoccluded area ratio is below 0.2 (dashed line).

a classifier for occlusion detection; the single classifier is

trained based on observation likelihoods and can be univer-

sally employed for various objects, sequences and tracking

algorithms. Our occlusion reasoning algorithm is tested in-

tensively in various tracking scenarios with occlusions and

showed significantly improved results in our experiment.

Acknowledgement

This research was supported by Basic Science Research

Program through the National Research Foundation of Ko-

rea funded by the Ministry of Education, Science and Tech-

nology (2010-0003496).

References

[1] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based track-

ing using the integral histogram. In CVPR, 2006. 1

[2] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection

and people-detection-by-tracking. In CVPR, 2008. 5

[3] S. Avidan. Ensemble tracking. IEEE Trans. PAMI, 29(2):261–271,

2007. 1

[4] CAVIAR: Context Aware Vision using Image-based Active Recog-

nition. http://homepages.inf.ed.ac.uk/rbf/CAVIAR/. 5

[5] D. Chen and J. Yang. Robust object tracking via online dynamic

spatial bias appearance models. IEEE Trans. PAMI, 29(12):2157–

2169, 2000. 1

[6] P. Chockalingam, N. Pradeep, and S. Birchfield. Adaptive fragments-

based tracking of non-rigid objects using level sets. In ICCV, 2009.

1

[7] R. Collins. Mean-shift blob tracking through scale space. In CVPR,

2003. 1

[8] S. L. Dockstader and A. M. Tekalp. Multiple camera tracking

of interacting and occluded human motion. Proceedings of IEEE,

89(10):1441–1455, 2001. 1

[9] F. Fleuret, J. Berclaz, R. Lengagne, and P. Fua. Multicamera people

tracking with a probabilistic occupancy map. IEEE Trans. PAMI,

30(2):267–282, 2008. 1

[10] V. Gay-Bellile, A. Bartoli, and P. Sayd. Direct estimation of non-

rigid registrations with image-based self-occlusion reasoning. IEEE

Trans. PAMI, 32(1):87 –104, 2010. 1

[11] H. Grabner, J. Matas, L. Van Gool, and P. Cattin. Tracking the invis-

ible: Learning where the object might be. In CVPR, 2010. 1

[12] B. Han and L. Davis. On-line density-based appearance modeling

for object tracking. In ICCV, 2005. 1

[13] B. Han and L. S. Davis. Probabilistic fusion-based parameter esti-

mation for visual tracking. CVIU, 113(4):435–445, 2009. 1

[14] M. Isard and A. Blake. Condensation - Conditional density propaga-

tion for visual tracking. IJCV, 29(1), 1998. 2

[15] A. Jepson, D. Fleet, and T. El-Maraghi. Robust online appearance

models for visual tracking. In CVPR, 2001. 1, 5

[16] J. Kwon and K. Lee. Tracking of abrupt motion using wang-landau

monte carlo estimation. In ECCV, pages I: 387–400, 2008. 1

[17] H. Lim, O. I. Camps, M. Sznaier, and V. I. Morariu. Dynamic ap-

pearance modeling for human tracking. In CVPR, 2006. 1

[18] X. Mei and H. Ling. Robust visual tracking using l1 minimization.

In ICCV, 2009. 2, 4, 5

[19] A. Mittal and L. S. Davis. M2tracker: A multi-view approach to seg-

menting and tracking people in a cluttered scene. IJCV, 51(3):189–

203, 2003. 1

[20] H. Nguyen and A. Smeulders. Tracking aspects of the foreground

against the background. In ECCV, May 2004. 1

[21] D. Ross, J. Lim, and M. Yang. Adaptive probabilistic visual tracking

with incremental subspace update. In ECCV, 2004. 1, 2, 5

[22] J. Shi and C. Tomasi. Good features to track. In CVPR, 1994. 3

[23] E. Sudderth, M. Mandel, W. Freeman, and A. Willsky. Distributed

occlusion reasoning for tracking with nonparametric belief propaga-

tion. In NIPS. MIT Press, 2004. 1

[24] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma. Ro-

bust face recognition via sparse representation. IEEE Trans. PAMI,

31:210–227, February 2009. 2

[25] Y. Wu, T. Yu, and G. Hua. Tracking appearances with occlusions. In

CVPR, 2003. 1

[26] M. Yang, Y. Wu, and G. Hua. Context-aware visual tracking. IEEE

Trans. PAMI, 31(7):1195–1209, 2009. 1

[27] M. Yang, J. Yuan, and Y. Wu. Spatial selection for attentional visual

tracking. In CVPR, 2007. 1

[28] X. Zhou and Y. Lu. Abrupt motion tracking via adaptive stochastic

approximation monte carlo sampling. In CVPR, 2010. 1

