

## Improving Cross-Modal Retrieval with Set of Diverse Embeddings TL;DR: "We propose an efficient & effective cross-modal retrieval propose efficient & effective cross-modal retrieval propose efficient & effective cross-modal retrieval propose efficient & efficient & effective cross-modal retrieval propose efficient & effective cross-modal retrieval propose efficient & efficient & effective cross-modal retrieval propose efficient & effective cross-modal retrieval propose efficient & efficient & efficient & efficient & efficient & efficient & effictive cross-modal efficient & efficient & efficient & efficient &

Set-prediction module

Aggregation block

Aggregation block

Element slot

Element slots compete for aggregating input,

Competition between slots makes element

attn = softmax  $\left(\frac{1}{\sqrt{D}}k(\text{inputs})\cdot q(\text{slots})^T, \text{axis='slots'}\right)$ 

Slot-attn [3] based attention scheme (Ours)

 $\mathtt{attn} = \mathtt{softmax} \left( \frac{1}{\sqrt{D}} k (\mathtt{inputs}) \cdot q (\mathtt{slots})^T, \mathtt{axis='inputs'} \right)$ 

Conventional transformer attention scheme

encode substantially different semantics.

progressively transformed into embedding set.

Dongwon Kim Namyup Kim Suha Kwak

POSTECH (Pohang University of Science and Technology)

# method that represents a sample with diverse embeddings."



## Motivation

#### Cross-modal retrieval

Searching for data when the query and database have different modalities (image and text).

## Ambiguity problem

- Even a single image often contains various contexts.
- Visual manifestations of a caption vary significantly.



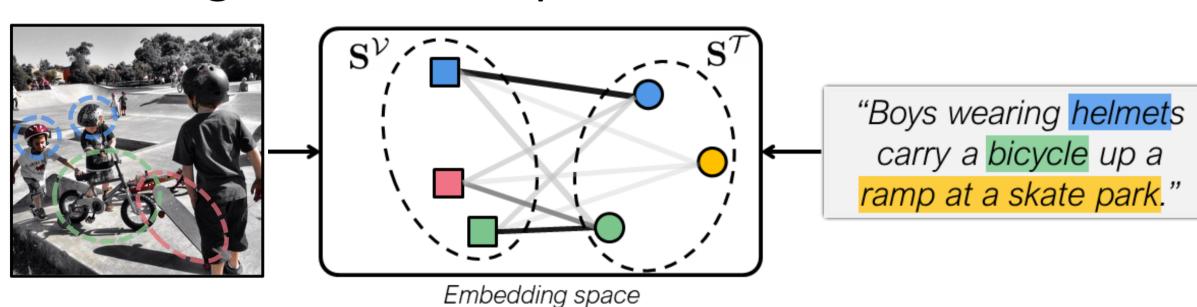
"Boys wearing helmets carry a bicycle up a ramp at a skate park."

> "Small children stand near bicycles at a skate park."

"A group of young children riding bikes and skateboards.

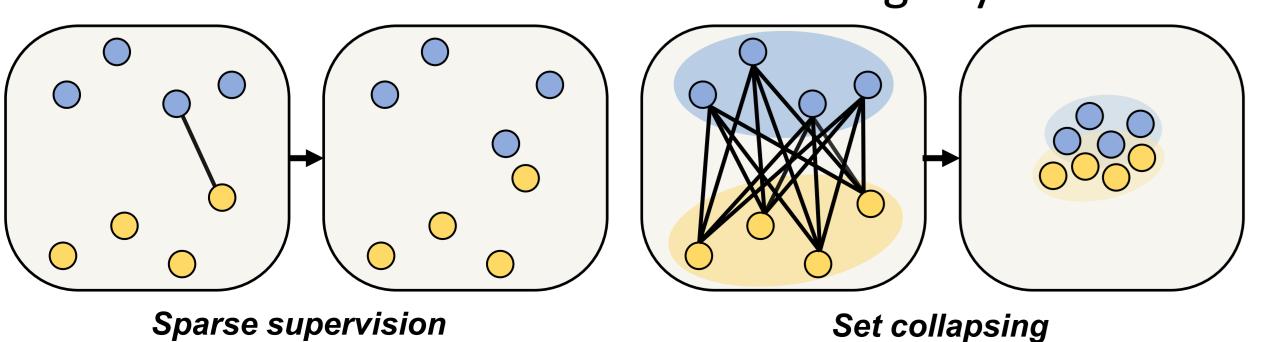
## Previous work: Set-based embedding

- Represent the data with the set of embedding vectors (embedding set) [1,2].
- Ambiguity of the data is addressed by elements of the embedding set, which represent diverse semantics.

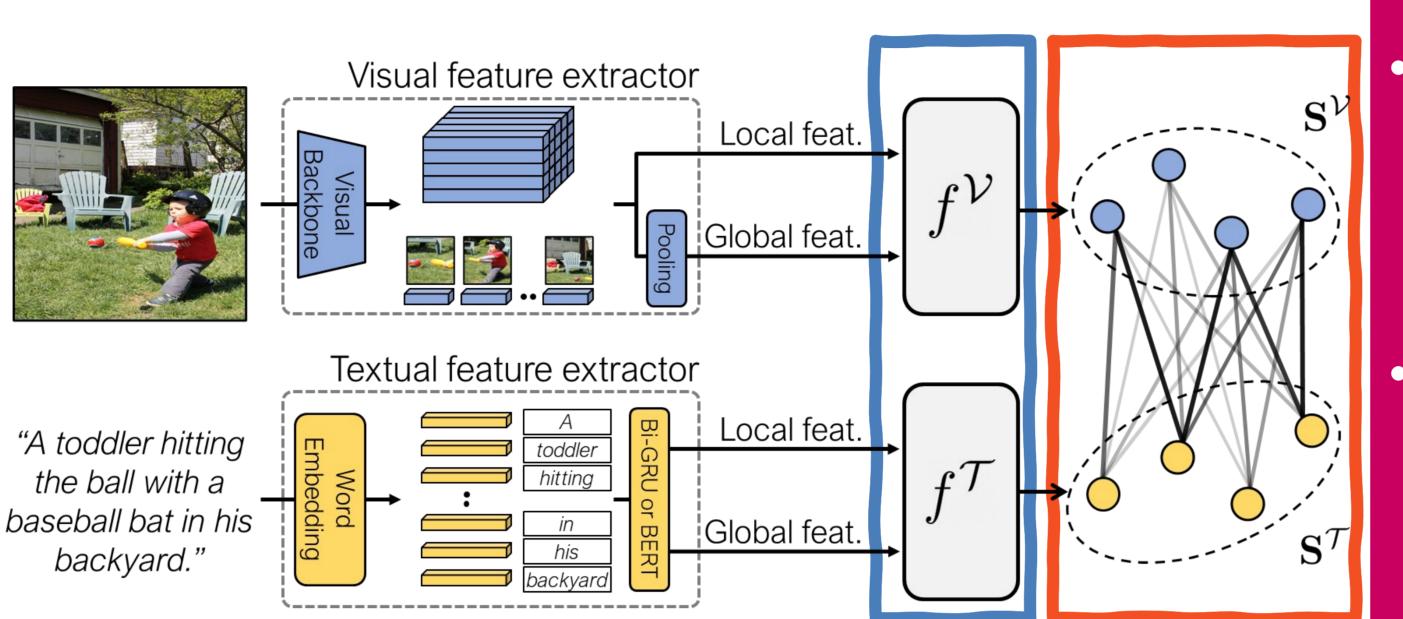


## Drawbacks of previous set-based embedding

- *Sparse supervision* → An embedding set most of whose elements remain untrained.
- **Set collapsing** → An embedding set with a small variance which does not encode sufficient ambiguity.



## Our solutions

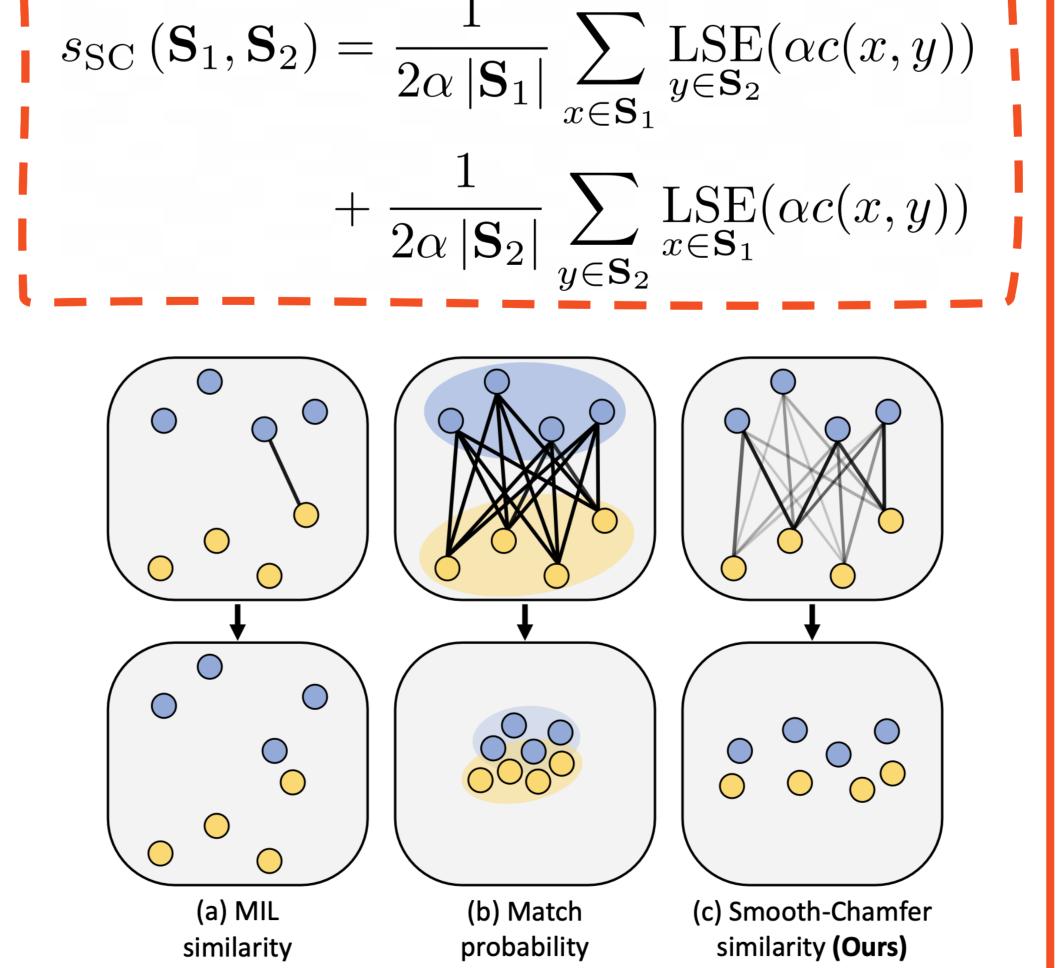


- Smooth-Chamfer similarity: Similarity function between sets that provides dense supervision without collapsing.
- Set-prediction module: The module captures diverse semantic ambiguity of input, motivated by slot-attn [3].

## Smooth-Chamfer similarity

Proposed SC similarity associates

- every possible pair
  - → Resolves **sparse supervision**
- with different degree of weights.
  - → Resolves **set collapsing**



## Experiments

## Achieved SOTA on COCO, Flickr30K, CxC, and ECCV-caption

|                               |    | 11x 1est images |                  |              |      |                  |             |       | 3K Test Images |                  |              |      |                  |             |       |
|-------------------------------|----|-----------------|------------------|--------------|------|------------------|-------------|-------|----------------|------------------|--------------|------|------------------|-------------|-------|
| Method                        | CA | In R@1          | nage-to-T<br>R@5 | Text<br>R@10 | R@1  | ext-to-Im<br>R@5 | age<br>R@10 | RSUM  | R@1            | nage-to-T<br>R@5 | Text<br>R@10 | To   | ext-to-Im<br>R@5 | age<br>R@10 | RSUM  |
| Faster R-CNN + Bi-GRU         |    |                 |                  |              |      |                  |             |       |                |                  |              |      |                  |             |       |
| SCAN <sup>†</sup> [30]        | /  | 72.7            | 94.8             | 98.4         | 58.8 | 88.4             | 94.8        | 507.9 | 50.4           | 82.2             | 90.0         | 38.6 | 69.3             | 80.4        | 410.9 |
| VSRN <sup>†</sup> [31]        | X  | 76.2            | 94.8             | 98.2         | 62.8 | 89.7             | 95.1        | 516.8 | 53.0           | 81.1             | 89.4         | 40.5 | 70.6             | 81.1        | 415.7 |
| CAAN [53]                     | /  | 75.5            | 95.4             | 98.5         | 61.3 | 89.7             | 95.2        | 515.6 | 52.5           | 83.3             | 90.9         | 41.2 | 70.3             | 82.9        | 421.1 |
| IMRAM <sup>†</sup> [6]        | /  | 76.7            | 95.6             | 98.5         | 61.7 | 89.1             | 95.0        | 516.6 | 53.7           | 83.2             | 91.0         | 39.7 | 69.1             | 79.8        | 416.5 |
| SGRAF <sup>†</sup> [14]       | /  | 79.6            | 96.2             | 98.5         | 63.2 | 90.7             | 96.1        | 524.3 | 57.8           | -                | 91.6         | 41.9 | -                | 81.3        | -     |
| $VSE_{\infty}$ [27]           | X  | 78.5            | 96.0             | 98.7         | 61.7 | 90.3             | 95.6        | 520.8 | 56.6           | 83.6             | 91.4         | 39.3 | 69.9             | 81.1        | 421.9 |
| NAAF <sup>†</sup> [52]        | /  | 80.5            | 96.5             | 98.8         | 64.1 | 90.7             | 96.5        | 527.2 | 58.9           | 85.2             | 92.0         | 42.5 | 70.9             | 81.4        | 430.9 |
| Ours                          | X  | 79.8            | 96.2             | 98.6         | 63.6 | 90.7             | 95.7        | 524.6 | 58.8           | 84.9             | 91.5         | 41.1 | 72.0             | 82.4        | 430.7 |
| Ours <sup>†</sup>             | X  | 80.6            | 96.3             | 98.8         | 64.7 | 91.4             | 96.2        | 528.0 | 60.4           | 86.2             | 92.4         | 42.6 | 73.1             | 83.1        | 437.8 |
| ResNeXt-101 + BERT            |    |                 |                  |              |      |                  |             |       |                |                  |              |      |                  |             |       |
| VSE <sub>∞</sub> [27]         | X  | 84.5            | 98.1             | 99.4         | 72.0 | 93.9             | 97.5        | 545.4 | 66.4           | 89.3             | 94.6         | 51.6 | 79.3             | 87.6        | 468.9 |
| $VSE_{\infty}^{\dagger}$ [27] | X  | 85.6            | 98.0             | 99.4         | 73.1 | 94.3             | 97.7        | 548.1 | 68.1           | 90.2             | 95.2         | 52.7 | 80.2             | 88.3        | 474.8 |
| Ours                          | X  | 86.3            | 97.8             | 99.4         | 72.4 | 94.0             | 97.6        | 547.5 | 69.1           | 90.7             | 95.6         | 52.1 | 79.6             | 87.8        | 474.9 |
| $\mathbf{Ours}^\dagger$       | X  | 86.6            | 98.2             | 99.4         | 73.4 | 94.5             | 97.8        | 549.9 | 71.0           | 91.8             | 96.3         | 53.4 | 80.9             | 88.6        | 482.0 |

#### Embedding set elements & their nearest caption



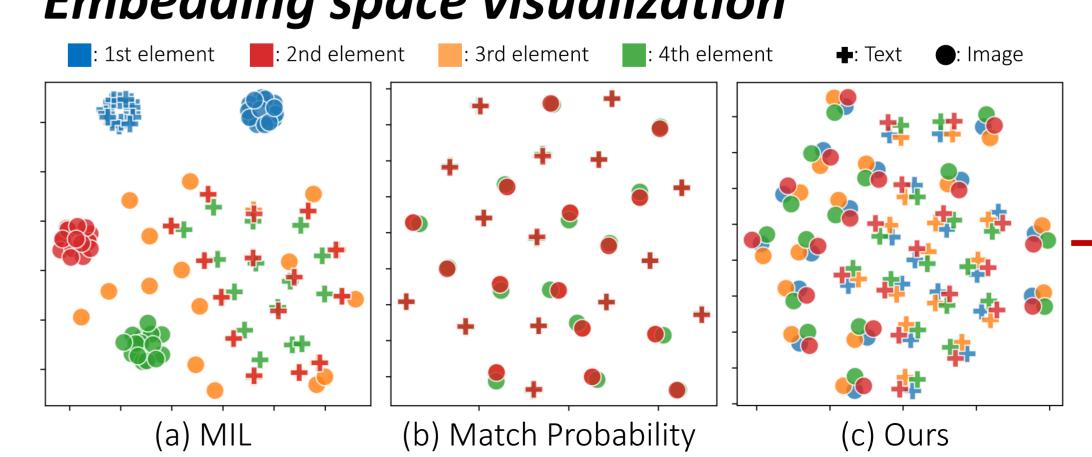


the grass together.

#### Ablation studies: similarity and model

| Similarity                      | Arch.           | RSUM           | Setting                   | $\log(\text{Var.})$ | <b>RSUM</b>    |  |
|---------------------------------|-----------------|----------------|---------------------------|---------------------|----------------|--|
| MIL<br>MP                       | Ours<br>Ours    | 491.7<br>490.5 | PIE-Net                   | -7.35               | 483.3          |  |
| Ours (Chamfer) Ours (S-Chamfer) | Ours<br>PIE-Net | 499.6<br>483.3 | Ours \w MP<br>Transformer | -5.27<br>-2.27      | 490.5<br>496.1 |  |
| Ours (S-Chamfer)                | Ours            | 500.8          | Ours                      | -2.13               | 500.8          |  |

#### Embedding space visualization



Our method successfully resolves sparse supervision & set collapsing issues.

- [1] Polysemous Visual-Semantic Embedding for Cross-Modal Retrieval, CVPR, 2019.
- [2] Probabilistic Embeddings for Cross-Modal Retrieval, CVPR, 2021.
- [3] Object-centric learning with slot attention, NeurIPS, 2020.

