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Motivation

Cross-modal retrieval
* Searching for data when the query and database have
different modalities (image and text).

Ambiguity problem
* Even asingle image often contains various contexts.
* Visual manifestations of a caption vary significantly.

“Boys wearing helmets carry a
™ bicycle up a ramp at a skate park.”

“Small children stand near
bicycles at a skate park.”

“A group of young children
riding bikes and skateboards.”

Previous work: Set-based embedding

 Represent the data with the set of embedding vectors
(embedding set) [1,2].

 Ambiguity of the data is addressed by elements of the
embedding set, which represent diverse semantics.
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Drawbacks of previous set-based embedding

* Sparse supervision—-> An embedding set most of whose
elements remain untrained.

* Set collapsing—> An embedding set with a small variance
which does not encode sufficient ambiguity.
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Sparse supervision Set collapsing
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Visual feature extractor

. Local feat.

Global feat.

“A toddler hitting
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Set-prediction module

Element slots compete for aggregating input,
progressively transformed into embedding set.

Competition between slots makes element
encode substantially different semantics.

Global feat.
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Slot-attn [3] based attention scheme (Ours)

1
attn = softmax | ——4k(inputs) - g(slots T,)
(sk(inputs) - g(s1ots)

Conventional transformer attention scheme

 Smooth-Chamfer similarity:

Similarity function between

sets that provides dense
supervision without collapsing.

e Set-prediction module:
The module captures diverse

semantic ambiguity of input,
motivated by slot-attn [3].
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Smooth-Chamfer similarity

Proposed SC similarity associates

* every possible pair

— Resolves sparse supervision
* with different degree of weights.
— Resolves set collapsing
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(a) MIL (b) Match
similarity probability
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(c) Smooth-Chamfer
similarity (Ours)
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Experiments
Achieved SOTA on COCO, Flickr30K, CxC, and ECCV-caption

1K Test Images

5K Test Images

Image-to-Text

Text-to-Image

Image-to-Text

Text-to-Image

Method CA ‘ R@1 R@5 R@I10 ‘ R@1 R@5 R@I0 ‘ RSUM ‘ R@1 R@5 R@I0 ‘ R@1 R@5 R@I10 ‘ RSUM
Faster R-CNN + Bi-GRU

SCANT [30] v | 727 948 984 | 588 884 948 507.9 | 504 822 900 | 386 693 804 410.9
VSRNT [31] X | 762 948 982 | 628 897 951 5168 | 53.0 81.1 894 | 405 706  8l.1 415.7
CAAN [53] v | 755 954 985 | 613 897 952 5156 | 525 833 909 | 412 703 829 421.1
IMRAMT [6] | v | 767 956 985 | 617 891 950 516.6 | 537 832 910 | 397 69.1 798 416.5
SGRAFT [14] | v | 796 962 985 | 632 907  96.1 5243 | 57.8 - 91.6 | 419 - 81.3 -
VSEoo [27] X | 785 960 987 | 61.7 903 956 5208 | 56.6 836 914 | 393 699  8l.1 421.9
NAAFT [52] v/ | 805 965 988 | 64.1 907  96.5 5272 | 589 852 920 | 425 709 814 430.9
Ours X | 798 962 98,6 | 63.6 907 957 5246 | 588 849 915 | 411 720 824 | 4307
Ours' X | 80.6 963 988 | 647 914 962 5280 | 604 862 924 | 426 731  83.1 437.8
ResNeXt-101 + BERT

VSE [27] X | 845 981 994 | 720 939 975 5454 | 664 893 946 | 516 793  87.6 468.9
VSEoo T [27] X | 8.6 980 994 | 731 943 977 548.1 | 68.1 902 952 | 527 802 883 474.8
Ours X | 8.3 978 994 | 724 940 976 5475 | 69.1 907 956 | 521 79.6  87.8 474.9
Ours' X | 866 982 994 | 734 945 978 | 5499 | 710 918 963 | 534 809 886 | 482.0

Embeddmg set elements & their nearest caption
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Ablatlon stddles similarity and model

S B -7 A giraffe and zebras mingle as
@l cars drive out of an animal park.

" RT1:A /arqe crowd is attending a

R1: Picture of an outdoor place
that is very beautiful.

outside a clock tower.

R1: Some animals that are around §

the grass together.

R1: A giraffe and zebras mingle as
§ cars drive out of an animal park.

R1: A giraffe and zebras mingle as | "b |

cars drive out of an animal park.

s R1:Alotof kids that are having

29 some fun.

' R1: A boy wearing a helmet near
skate boarders.

R1: Small children playing with
.\ bikes on sloped concrete park.

R1: Small children stand near

bicycles at a skate park.

R1: An individual enjoying itself
" on a sunny day.

S R1: A manon a horse on a street

| near people walking.
s’ R7: A man on a horse on a street

S near people walking.

Similarity Arch.  RSUM Setting log(Var.) RSUM
ﬁ}' 8“1‘5 jg(l)g PIE-Net 735 4833
urs .
Ours (Chamfer) Ours 499.6 Ours \w MP -5.27 490.5
Ours (S-Chamfer) PIE-Net 4833  [Iransformer  -2.27  496.1
Ours (S-Chamfer)  Ours 500.8 Ours -2.13 500.8
Embedding space visualization
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(a) MIL (b) Match Probability (c) Ours

R1: An older man is riding a horse

Our method

successfully resolves
sparse supervision &
set collapsing issues.

Polysemous Visual-Semantic Embedding for Cross-Modal Retrieval, CVPR, 2019. jyne 1822, 2023 &
] Probabilistic Embeddings for Cross-Modal Retrieval, CVPR, 2021.
Object-centric learning with slot attention, NeurlPS, 2020.

down the street.
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